Document Type : Research Paper

Authors

1 Electrical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Al-Furat Al-Awsat Technical University ATU, Kufa, Iraq.

Abstract

Surface waves are electromagnetic waves propagating along the interface between a metal and an insulator. Surface waves break the diffraction limits and enable light to propagate in sub-wavelength structures. That opens the field of electro-opto devices. The main drawbacks of surface waves that move in the Plasmonic Waveguides (PWs) are propagation loss and low light confinement. Using a combination of the plasmonic waveguide and a Dielectric Waveguide (DW), the defect of the surface waves can be enhanced, and the Hybrid Plasmonic waveguide (HPW) is introduced. In this research, the design of an all-optical flip flop with 400 nm × 400 nm nano-scale dimensions, 1310 nm operating wavelength, and a transmission threshold (Tthreshold) of 30% is shown using hybrid plasmonic waveguides (HPWGs) for Electro-Opto applications. It offers the basic structure for creating optical computers. The results of this structure are evaluated in a term of Contrast Ratio (CR), Modulation Depth (MD), and Insertion Losses (IL). The D-flip flop had an Insertion Loss of -1.4 dB, a CR of 7.45 dB, and a MD of  97.67%. The T-flip flop had an IL of -2.07 dB, a CR of 11.2 dB, and a MD of 95.29%. The mechanism that governs the operation of the suggested circuits depends on the constructive and destructive interferences between input ports and control ports. The simulation is based on the finite element method utilizing COMSOL software package version 5.5.

Graphical Abstract

Highlights

  • Optical D and T flip flops are designed using hybrid plasmonic waveguides
  • The suggested design has nano dimensions of 400 nm2
  • There is an amplification effect in the Transmission values

Keywords

Main Subjects

  1. J. Maleki, M. Soroosh, and G. Akbarizadeh, A subwavelength graphene surface plasmon polariton-based decoder, Diam. Relat. Mater., 134 (2023) 1–11, https://doi.org/10.1016/j.diamond.2023.109780
  2. G. S. Rao, V. Palacharla, S. Swarnakar, and S. Kumar, Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking, Appl. Opt., 59 (2020) 7139. https://doi.org/10.1364/AO.400223
  3. Dolatabady and N. Granpayeh, All-optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator, J. Nanophotonics, 11(2017) 026001. https://doi.org/10.1117/1.JNP.11.026001
  4. Kumari, A. Pal, A. Singh, and S. Sharma, All-optical binary to gray code converter using non-linear material based MIM waveguide, Optik, 200 (2020) 163449. https://doi.org/10.1016/j.ijleo.2019.163449
  5. H. Abdulwahid, A. G. Wadday, and S. M. Abdulsatar, Design of Optical Combinational Circuits Utilized with Hybrid Plasmonic Waveguides, Plasmonics, 18 (2023) 9–28. https://doi.org/10.1007/s11468-022-01733-5
  6. H. Abdulwahid, M. R. Saeed, and A. A. Hadi, Design of three-bit binary to gray converter based on metal–insulator–metal plasmonic waveguides, Appl. Opt., 62 (2023) 6456–6463. https://doi.org/10.1364/AO.500028
  7. H. Abdulwahid, A. G. Wadday, F. M. Ali, B. J. Hamza, and A. N. Al-Shamani, Realization of an optical nanostructure 4× 1 multiplexer based on metal-insulator-metal plasmonic waveguides, Appl.Opt., 62 (2023) 6163–6168. https://doi.org/10.1364/AO.497810
  8. Falah Fakhruldeen, Design and Simulation of All-Optical Plasmonic Logic Gates Based on Nano-Ring Insulator-Metal-Insulator Waveguides, Int. J. Advanc. Sci. Technol., 29 (2020) 405-424. https://doi.org/10.26782/jmcms.2020.02.00015
  9. K. Al-Musawi, A. K. Al-Janabi, S. A. W. Al-abassi, N. A. H. A. Abusiba, and N. A. H. Q. Al-Fatlawi, Plasmonic logic gates based on dielectric-metal-dielectric design with two optical communication bands, Optik, 223(2020) 165416, https://doi.org/10.1016/j.ijleo.2020.165416
  10. H. Rezaei and A. Zarifkar, “Graphene-based plasmonic electro-optical SR flip-flop with an ultra-compact footprint,” Opt Express, 28(2020) 25167. https://doi.org/10.1364/OE.398597
  11. H. Abdulwahid, A. G. Wadday, and S. M. A. Sattar, New structure for an all-optical logic gate based on hybrid plasmonic square-shaped nano-ring resonators and strips, Opt Quantum Electron., 54 (2022) 1–23. http://dx.doi.org/10.1007/s11082-022-04018-7
  12. A. Alwahib, S. M. Hasan, and K. A. Hubeatir, A surface plasmon temperature sensor based on E7 liquid crystal using angle interrogation method, J. Electromagn. Waves Appl., 36(2021) 1–15. https://doi.org/10.1080/09205071.2021.1960901
  13. A. A. Abdul Amir, M. A. Fakhri, and A. Alwahib, Synthesized of GaN Nanostructure Using 1064 nm Laser Wavelength by Pulsed Laser Ablation in Liquid, Eng.Technol.J., vol. 40 (2022) 404–411. https://doi.org/10.30684/etj.v40i2.2271
  14. Z. Alam, J. S. Aitchison, and M. Mojahedi, Theoretical analysis of hybrid plasmonic waveguide, IEEE Journal of Selected Topics in Quantum Electronics, 19 (2013) 4602008. https://doi.org/10.1109/JSTQE.2013.2238894
  15. Dai and S. He, A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement, Opt. Express, 17 (2009) 16646–16653. https://doi.org/10.1364/OE.17.016646
  16. Fujii, J. Leuthold, and W. Freude, Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides, IEEE Photonics Technol. Letters, 21 (2009) 362–364. https://doi.org/10.1109/LPT.2008.2011995
  17. M. Hartnett, S. D. Bernstein, E. A. Maguire, and R. W. Tustison, Optical properties of ALON (aluminum oxynitride), Infrared Physics Technol., 39 (1998)203-211. https://doi.org/10.1016/S1350-4495(98)00007-3
  18. B. Johnson and R.-Wjp. Christy, Optical constants of the noble metals, Phys. Rev. B, 6 (1972) 4370. https://doi.org/10.1103/PhysRevB.6.4370
  19. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, Research on transmission characteristics of aperture-coupled square-ring resonator based filter, Opt Commun., 294 (2013) 368–371. https://doi.org/10.1016/j.optcom.2012.12.026
  20. -D. Wu, Y.-T. Hsueh, and T.-T. Shih, Novel All-optical Logic Gates Based on Microring Metal-insulator-metal Plasmonic Waveguides, PIERS Proceedings, (2013) 169-172.
  21. N. Abbas and S. H. Abdulnabi, Plasmonic reversible logic gates, J. Nanophotonics, 14 (2020) 016003. https://doi.org/10.1117/1.JNP.14.016003
  22. H. Abdulnabi and M. N. Abbas, All-optical logic gates based on nanoring insulator–metal–insulator plasmonic waveguides at optical communications band, J. Nanophotonics, 13 (2019) 016009.https://doi.org/10.1117/1.JNP.13.016009
  23. H. Abdulwahid, A. G. Wadday, and S. M. A. Sattar, All-optical design for multiplexer and comparator utilizing hybrid plasmonic waveguides, Appl. Opt., 61 (2022) 8864–8872. https://doi.org/10.1364/AO.474373
  24. H. Abdulnabi and M. N. Abbas, Design an all-optical combinational logic circuits based on nano-ring insulator-metal-insulator plasmonic waveguides, Photonics,6 (2019) 30. https://doi.org/10.3390/photonics6010030
  25. L. Floyd, Digital fundamentals: A systems approach, Pearson Education Limited, 2014.
  26. G. S. Rao, V. Palacharla, S. Swarnakar, and S. Kumar, Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking, Appl. Opt., 59 (2020) 7139-7143. https://doi.org/10.1364/ao.400223.