Document Type : Research Paper

Authors

1 Electrical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq. College of Engineering, Al-Iraqia University, Saba’a Abkar Compex, Baghdad, Iraq.

2 Electrical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

3 Middle Technical University, Electrical Engineering Technical College-Baghdad, Iraq.

Abstract

Bio-implanted medical devices with electronic components play a crucial role due to their effectiveness in monitoring and diagnosing diseases, enhancing patient comfort, and ensuring safety. Recently, significant efforts have been conducted to develop implantable and wireless telemetric biomedical systems. Topics such as appropriate near-field wireless communication design, power use, monitoring devices, high power transfer efficiency from external to internal parts (implanted), high communication rates, and the need for low energy consumption all significantly influence the advancement of implantable systems. In this survey, a comprehensive examination is undertaken on diverse subjects associated with near-field wireless power transfer (WPT)-based biomedical applications. The scope of this study encompasses various aspects, including WPT types, a comparative analysis of WPT types and techniques for medical devices, data transmission methods employing WPT-based modulation approaches, and the integration of WPT into biomedical implantable systems. Furthermore, the study investigates the extraction of research concerning WPT topologies and corresponding mathematical models, such as power transfer, transfer efficiency, mutual inductance, quality factor, and coupling coefficient, sourced from existing literature. The article also delves into the impact of the specific absorption rate on patient tissue. It sheds light on WPT's challenges in biomedical implants while offering potential solutions.

Graphical Abstract

Highlights

  • Review of wireless power transfer techniques and their classifications in biomedical applications.
  • Comparison of WPT methods for biomedical devices based on performance metrics.
  • Introduction to major near-field wireless power transfer topologies and related mathematical models.
  • Comparison of data transmission schemes in WPT-based modulation techniques.
  • Investigation of the main applications of biomedical devices, then discussion of the challenges and solutions.

Keywords

Main Subjects

  1. Camara, P. Peris-Lopez, and J. E. Tapiador, Security and privacy issues in implantable medical devices: A comprehensive survey, J. Biomed. Inf.,55 (2015) 272-289. https://doi.org/10.1016/j.jbi.2015.04.007.
  2. Sheng, X. Zhang, J. Liang, M. Shao, E. Xie, C. Yu, and W. Lan, Recent advances of energy solutions for implantable bioelectronics, Adv. Healthc. Mater.,10 (2021) 2100199. https://doi.org/10.1002/adhm.202100199.
  3. H. Kim, B. Rigo, G. Wong, Y. J. Lee, and W.-H. Yeo, Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring, Nano-Micro Letters,16 (2023) 52. https://doi.org/10.1007/s40820-023-01272-6.
  4. Mou, X. and Sun, H., Wireless power transfer: Survey and roadmap, in VTC Spring, Glasgow, UK, 2015. https://doi.org/10.1109/VTCSpring.2015.7146165.
  5. Mutashar, M. Hannan, S. A. Samad, and A. Hussain, Efficient data and power transfer for bio-implanted devices based on ASK modulation techniques, J. Mech Med Biol.,12 (2012) 1240030. http://dx.doi.org/10.1142/S0219519412400301.
  6. Mutashar, M. A. Hannan, S. A. Samad, and A. Hussain, Efficient low-power recovery circuits for bio-implanted micro-sensors, Przegląd Elektrotechniczny, 89 (2013) 15-18.
  7. Zhao, J. Yan, J. Cheng, Y. Fu, J. Zhou, J. Yan, and J. Guo, Development of Flexible Electronic Biosensors for Healthcare Engineering, IEEE Sens. J., (2023) 1-1. https://doi.org/10.1109/JSEN.2023.3287291
  8. Ballo, M. Bottaro, and A. D. Grasso, A review of power management integrated circuits for ultrasound-based energy harvesting in implantable medical devices, Appl. Sci., 11 (2021) 2487. https://doi.org/10.3390/app11062487.
  9. Hassija, V. Chamola, B. C. Bajpai, and S. Zeadally, Security issues in implantable medical devices: Fact or fiction?, Sustainable Cities Soc., 66 (2021) 102552. https://doi.org/10.1016/j.scs.2020.102552.
  10. Zhang, Z. Ma, H. Zheng, T. Li, K. Chen, X. Wang, C. Liu, L. Xu, X. Wu, and D. Lin, The combination of brain-computer interfaces and artificial intelligence: applications and challenges, Ann. Transl. Med., 8 (2020) 32617332. https://doi.org/10.21037%2Fatm.2019.11.109.
  11. B. Amar, A. B. Kouki, and H. Cao, Power approaches for implantable medical devices, sensors., 15 (2015) 28889-28914. https://doi.org/10.3390/s151128889.
  12. Ibrahim, N. Shaari, and A. H. M. Aman, Bio-fuel cell for medical device energy system: A review, Int. J. Energy Res., 45 (2021) 14245-14273. https://doi.org/10.1002/er.6741.
  13. Zebda, J.-P. Alcaraz, P. Vadgama, S. Shleev, S. D. Minteer, F. Boucher, P. Cinquin, and D. K. Martin, Challenges for successful implantation of biofuel cells, Bioelectrochemistry, 124 (2018) 57-72. https://doi.org/10.1016/j.bioelechem.2018.05.011.
  14. Trigui, S. Hached, A. C. Ammari, Y. Savaria, and M. Sawan, Maximizing data transmission rate for implantable devices over a single inductive link: Methodological review, IEEE Rev. Biomed. Eng., 12 (2018) 72-87. https://doi.org/10.1109/RBME.2018.2873817.
  15. Jegadeesan, S. Nag, K. Agarwal, N. V. Thakor, and Y.-X. Guo, Enabling wireless powering and telemetry for peripheral nerve implants, IEEE J. Biomed. Health. Inform., 19 (2015) 958-970 .https://doi.org/10.1109/JBHI.2015.2424985.
  16. Jiang, K. Chau, C. Liu, and C. H. Lee, An overview of resonant circuits for wireless power transfer, Energies, 10 (2017) 894. https://doi.org/10.3390/en10070894.
  17. M. Jawad, R. Nordin, S. K. Gharghan, H. M. Jawad, and M. Ismail, Opportunities and challenges for near-field wireless power transfer: A review, Energies,10 (2017) 1022. https://doi.org/10.3390/en10071022.
  18. K. Sharma, S. Bhuvaneswari, H. K. Lautre, V. P. Sundramurthy, S. Mohanasundaram, J. M. Khaled, and M. Thiruvengadam, Cellulose fortified bio-composite film preparation using starch isolated from waste avocado seed: starch properties and film performance, Biomass Convers. Biorefin., (2023) https://doi.org/10.1007/s13399-023-05058-z.
  19. Xia and S. Aissa, On the efficiency of far-field wireless power transfer, IEEE Trans. Signal Process., 63 (2015) 2835-2847. https://doi.org/10.1109/TSP.2015.2417497.
  20. T. Nguyen, C. V. Nguyen, L. H. Truong, A. M. Le, T. V. Quyen, A. Masaracchia, and K. A. Teague, Electromagnetic field based wpt technologies for uavs: A comprehensive survey, Electronics., 9 (2020) 461. https://doi.org/10.3390/electronics9030461.
  21. Song, P. Jayathurathnage, E. Zanganeh, M. Krasikova, P. Smirnov, P. Belov, P. Kapitanova, C. Simovski, S. Tretyakov, and A. Krasnok, Wireless power transfer based on novel physical concepts, Nat. Electron., 4 (2021) 707-716. https://doi.org/10.1038/s41928-021-00658-x.
  22. D. Barman, A. W. Reza, N. Kumar, M. E. Karim, and A. B. Munir, Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications, Renew. Sust. Energ. Rev., 51 (2015) 1525-1552. https://doi.org/10.1016/j.rser.2015.07.031.
  23. Patel, C., and Doshi, N., Security challenges in IoT cyber world, in Security in Smart Cities: Models, Applications, and Challenges: Springer, 171-191, 2019.
  24. R. Hui, Technical and safety challenges in emerging trends of near-field wireless power transfer industrial guidelines, IEEE Electromagn. Compat. Mag., 7 (2018) 78-86. https://doi.org/10.1109/MEMC.0.8339551.
  25. Lim and Y. Lee, Reconfigurable Coil Array for Near-Field Beamforming to Compensate for Misalignment in WPT Systems, IEEE Trans. Microw. Theory Tech., 69 (2021) 4711-4719. https://doi.org/10.1109/TMTT.2021.3090066.
  26. Van Mulders, D. Delabie, C. Lecluyse, C. Buyle, G. Callebaut, L. Van der Perre, and L. De Strycker, Wireless power transfer: Systems, circuits, standards, and use cases, Sensors., 22 (2022) 5573. https://doi.org/10.3390/s22155573.
  27. -J. Kim, H. Hirayama, S. Kim, K. J. Han, R. Zhang, and J.-W. Choi, Review of near-field wireless power and communication for biomedical applications, IEEE Access, 5 (2017) 21264-21285. https://doi.org/10.1109/ACCESS.2017.2757267.
  28. Zhang, R. Das, J. Zhao, N. Mirzai, J. Mercer, and H. Heidari, Battery‐Free and Wireless Technologies for Cardiovascular Implantable Medical Devices, Adv. Mater. Technol., 7 (2022) 2101086. https://doi.org/10.1002/admt.202101086.
  29. Pal and K. Kant, NFMI: Near Field Magnetic Induction based communication, Comput. Netw., 181 (2020) 107548. https://doi.org/10.1016/j.comnet.2020.107548.
  30. Z. A. Zaki, E. K. I. Hamad, T. G. Abouelnaga, H. A. Elsadek, S. A. Khaleel, A. J. A. Al-Gburi, and Z. Zakaria, Design and Modeling of Ultra-Compact Wideband Implantable Antenna for Wireless ISM Band, Bioengineering, 10 (2023) 216. https://www.mdpi.com/2306-5354/10/2/216.
  31. Héroux, I. Belyaev, K. Chamberlin, S. Dasdag, A. A. A. De Salles, C. E. F. Rodriguez, L. Hardell, E. Kelley, K. K. Kesari, E. Mallery-Blythe, R. L. Melnick, A. B. Miller, J. M. Moskowitz, and o. b. o. t. I. C. o. t. B. E. o. E. Fields, Cell Phone Radiation Exposure Limits and Engineering Solutions, Int. J. Environ. Res. Public Health, 20 (2023) 5398. https://doi.org/10.3390/ijerph20075398.
  32. Ahmadi, I. V. McLoughlin, S. Chauhan, and G. Ter-Haar, Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure, Prog. Biophys. Mol. Biol., 108 (2012) 119-138. https://doi.org/10.1016/j.pbiomolbio.2012.01.004.
  33. M. Won, L. Cai, P. Gutruf, and J. A. Rogers, Wireless and battery-free technologies for neuroengineering, Nat. Biomed. Eng., (2021) 1-19. https://doi.org/10.1038/s41551-021-00683-3.
  34. C. o. N.-I. R. Protection, Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz), Health Phys.,118 (2020) 483-524. http://dx.doi.org/10.1097/HP.0000000000001210.
  35. Li, K. Sasaki, S. Watanabe, and H. Shirai, Relationship between power density and surface temperature elevation for human skin exposure to electromagnetic waves with oblique incidence angle from 6 GHz to 1 THz, Phys. Med. Biol., 64 (2019) 065016 . https://doi.org/10.1088/1361-6560/ab057a
  36. A. Hannan, S. Mutashar, S. A. Samad, and A. Hussain, Energy harvesting for the implantable biomedical devices: issues and challenges, Biomed. Eng., 13 (2014) 1-23. https://doi.org/10.1186/1475-925X-13-79.
  37. Singer and J. T. Robinson, Wireless power delivery techniques for miniature implantable bioelectronics, Adv. Healthc. Mater.,10 (2021) 2100664. https://doi.org/10.1002/adhm.202100664.
  38. M. El Rayes, G. Nagib, and W. A. Abdelaal, A review on wireless power transfer, Int. J. Eng. Trends Technol.,40 (2016) 272-280.
  39. Ahire and V. J. Gond, Wireless power transfer system for biomedical application: A review, 2017 International Conference on Trends in Electronics and Informatics, Tirunelveli, India, 2017, 135-140. https://doi.org/10.1109/ICOEI.2017.8300903.
  40. -F. Chen, Z. Ding, Z. Hu, S. Wang, Y. Cheng, M. Liu, B. Wei, and S. Wang, Metamaterial-based high-efficiency wireless power transfer system at 13.56 MHz for low power applications, Prog. Electromagn. Res., B,72 (2017) 17-30 . http://dx.doi.org/10.2528/PIERB16071509.
  41. Razek, Assessment of EMF Troubles of Biological and Instrumental Medical Questions and Analysis of Their Compliance with Standards, Standards, 3 (2023) 227-239 . https://doi.org/10.3390/standards3020018.
  42. G. Chmielewski, Radiation technologies: The future is today, Radiat. Phys. Chem., 213 (2023) 111233. https://doi.org/10.1016/j.radphyschem.2023.111233.
  43. A. Rayan, U. Subramaniam, and S. Balamurugan, Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects, Energies, 16 (2023) 3084 . http://dx.doi.org/10.3390/en16073084.
  44. M. S. de Jesus, T. M. Tolfo, R. B. Godoy, M. d. C. Pelzl, B. d. S. Acosta, and R. L. R. Soares, Differential-Evolution-Assisted Optimization of Classical Compensation Topologies for 1 W Current-Fed IMD Wireless Charging Systems, Appl. Sci.,13 (2023) 12429. https://doi.org/10.3390/app132212429
  45. D. P. Stanchieri, A. D. Marcellis, M. Faccio, E. Palange, and U. Guler, A 0.18 μm CMOS Integrated Optical Wireless Power Transfer System for Implantable Biomedical Devices, in MIXDES, 29-30 June 2023, 67-72. https://doi.org/10.23919/MIXDES58562.2023.10203250
  46. Yao, Y. Wang, X. Liu, H. Cheng, M. Liu, and D. Xu, Analysis, design, and implementation of a wireless power and data transmission system using capacitive coupling and double-sided LCC compensation topology, IEEE Trans. Ind. Appl., 55 (2018) 541-551. https://doi.org/10.1109/TIA.2018.2869120.
  47. Dai, X. Zhang, T. Liu, C. Pei, T. Chen, R. Dou, and J. Wang, Magnetic Coupling Mechanism With Omnidirectional Magnetic Shielding for Wireless Power Transfer, IEEE Trans. Electromagn. Compat., 65 (2023) 1565-1574. https://doi.org/10.1109/TEMC.2023.3266089
  48. Roy, A. W. Azad, S. Baidya, M. K. Alam, and F. H. Khan, Powering Solutions for Biomedical Sensors and Implants inside Human BodyA Comprehensive Review on Energy Harvesting Units, Energy Storage, and Wireless Power Transfer Techniques, IEEE Trans. Power Electron., 37 (2022) 12237 – 12263. https://doi.org/10.1109/TPEL.2022.3164890.
  49. K. Piech, B. C. Johnson, K. Shen, M. M. Ghanbari, K. Y. Li, R. M. Neely, J. E. Kay, J. M. Carmena, M. M. Maharbiz, and R. Muller, A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication, Nat. Biomed. Eng., 4 (2020) 207-222. https://doi.org/10.1038/s41551-020-0518-9.
  50. Liu, K. Zhang, Z. Li, W. Cui, W. Liang, M. Wang, C. Fan, H. Zheng, and E. Li, A wideband circular polarization implantable antenna for health monitor microsystem, IEEE Antennas Wirel. Propag. Lett., 20 (2021) 848-852. https://doi.org/10.1109/LAWP.2021.3065445.
  51. Anschuetz, S. Weder, G. Mantokoudis, M. Kompis, M. Caversaccio, and W. Wimmer, Cochlear implant insertion depth prediction: a temporal bone accuracy study, Otol. Neurotol., 39 (2018) e996-e1001. https://doi.org/10.1097/MAO.0000000000002034
  52. Gekeler, K. U. Bartz-Schmidt, H. Sachs, R. E. MacLaren, K. Stingl, E. Zrenner, and F. Gekeler, Implantation, removal and replacement of subretinal electronic implants for restoration of vision in patients with retinitis pigmentosa, Curr. Opin. Ophthalmol., 29 (2018) 239-247. https://doi.org/10.1097/ICU.0000000000000467.
  53. R. Khan and G. Choi, Analysis and optimization of four-coil planar magnetically coupled printed spiral resonators, Sensors, 16 (2016) 1219. https://doi.org/10.3390/s16081219.
  54. Meng and M. Kiani, Design and optimization of ultrasonic wireless power transmission links for millimeter-sized biomedical implants, IEEE Trans. Biomed. Circuits Syst., 11 (2016) 98-107. https://doi.org/10.1109/TBCAS.2016.2583783.
  55. J. M. Yazdi, S. Cho, and J.-H. Lee, Analysis and optimization of six types of two-coil inductive for the human implantable wireless electrocardiogram sensor, in Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXI, United states, 6-11 March 2021, vol. 11635: Curr. Opt. Photonics. https://doi.org/10.1117/12.2582372.
  56. K. Biswas, N. T. Tasneem, and I. Mahbub, Optimization of miniaturized wireless power transfer system to maximize efficiency for implantable biomedical devices, IEEE Texas Symp. Wireless and Microwave Circuits and Systems, 2019. https://doi.org/10.1109/WMCaS.2019.8732531.
  57. Yoo, J. Lee, H. Joo, S. H. Sunwoo, S. Kim, and D. H. Kim, Wireless power transfer and telemetry for implantable bioelectronics, Adv. Healthc. Mater.,10 (2021) 2100614. https://doi.org/10.1002/adhm.202100614.
  58. L. Barbruni, P. M. Ros, D. Demarchi, S. Carrara, and D. Ghezzi, Miniaturised wireless power transfer systems for neurostimulation: A review, IEEE Trans. Biomed. Circuits Syst., 14 (2020) 1160-1178. https://doi.org/10.1109/tbcas.2020.3038599.
  59. Z. bin Mustapa, S. Saat, Y. Yusof, and M. M. Shaari, Capacitive power transfer in biomedical implantable device: a review, Int. J. Pow. Elec. Dri. Syst., 10 (2019) 935-942 . https://doi.org/10.11591/IJPEDS.V10.I2.PP935-942.
  60. Chokkalingam, S. Padmanaban, and Z. M. Leonowicz, Class E power amplifier design and optimization for the capacitive coupled wireless power transfer system in biomedical implants, Energies., 10 (2017) 1409 . https://doi.org/10.3390/en10091409.
  61. Wang, Z. Sun, Y. Guan, and D. Xu, Overview of Megahertz Wireless Power Transfer, Proc. IEEE,111 (2023) 528-554 https://doi.org/10.1109/JPROC.2023.3265689.
  62. Jegadeesan, K. Agarwal, Y.-X. Guo, S.-C. Yen, and N. V. Thakor, Wireless power delivery to flexible subcutaneous implants using capacitive coupling, IEEE Trans. Microw. Theory Tech., 65 (2016) 280-292. https://doi.org/10.1109/TMTT.2016.2615623
  63. Mahmoud and R. Hattori, Wireless Battery Charging System for Drones via Capacitive Power Transfer, in WoW, Chongqing, China, 20-22 May 2017: The Institute of Electronics, Information and Communication Engineers, 2017. https://doi.org/10.1109/WoW.2017.7959357.
  64. Vincent, P. S. Huynh, L. Patnaik, and S. S. Williamson, Prospects of capacitive wireless power transfer (C-WPT) for unmanned aerial vehicles, in 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (Wow), Montreal, QC, Canada, 2018, 1-5. https://doi.org/10.1109/WoW.2018.8450918.
  65. Sedehi, D. Budgett, J. Jiang, X. Ziyi, X. Dai, A. P. Hu, and D. McCormick, A wireless power method for deeply implanted biomedical devices via capacitively coupled conductive power transfer, IEEE Trans. Power Electron., 36 (2020) 1870-1882. https://doi.org/10.1109/TPEL.2020.3009048.
  66. Sharma and D. Kathuria, Performance analysis of a wireless power transfer system based on inductive coupling, in 2018 Int. Conf. Computing, Power and Communication Technologies, 2018, 55-59. https://doi.org/10.1109/GUCON.2018.8674945.
  67. Luo, T. Long, R. Mai, R. Dai, Z. He, and W. Li, Analysis and design of hybrid inductive and capacitive wireless power transfer for high-power applications, IEEE Trans. Power Electron., 11 (2018) 2263-2270. https://doi.org/10.1049/iet-pel.2018.5279.
  68. Sidiku, E. Eronu, and E. Ashigwuike, A review on wireless power transfer: Concepts, implementations, challenges, and mitigation scheme, Niger. J. Technol., 39 (2020) 1206-1215. https://doi.org/10.4314/njt.v39i4.29.
  69. Duan, Y.-X. Guo, and D.-L. Kwong, Rectangular coils optimization for wireless power transmission, Radio Sci., 47 (2012) 1-10. https://doi.org/10.1029/2011RS004970.
  70. Wang, W. Liu, M. Sivaprakasam, M. Zhou, J. D. Weiland, and M. S. Humayun, A dual band wireless power and data telemetry for retinal prosthesis, in Int. Conf. IEEE Eng. Med. Biol. Soc., New York, NY, USA, 2006, 4392-4395. https://doi.org/10.1109/IEMBS.2006.260470.
  71. J. M. Yazdi, S. Cho, and J.-H. Lee, Analysis and optimization of six types of two-coil inductive for the human implantable wireless electrocardiogram sensor, in Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXI, California, United States, SPIE, 11635, 2021, 41-50. https://doi.org/10.1117/12.2582372.
  72. C. Cheah, S. A. Watson, and B. Lennox, Limitations of wireless power transfer technologies for mobile robots, Wireless Power Transfer, 6 (2019) 175-189. https://doi.org/10.1017/wpt.2019.8.
  73. I. Mahmood, S. K. Gharghan, M. A. Eldosoky, and A. M. Soliman, Near‐field wireless power transfer used in biomedical implants: A comprehensive review, IEEE Trans. Power Electron.,15 (2022) 1936-1955. https://doi.org/10.1049/pel2.12351.
  74. Zhou, J. Xiao, H. Zhuo, Y. Mo, D. Zhang, and P. Du, Optimization of the Relay Coil Compensation Capacitor for the Three-Coil Wireless Power Transmission System, Sustainability., 15 (2023) 15094. https://doi.org/10.3390/su152015094
  75. K. Sahu, S. Jena, S. Behera, M. M. Sahu, S. R. Prusty, and R. Dash, Wireless power transfer topology analysis for inkjet-printed coil, Open Eng., 12 (2022) 373-380. https://doi.org/10.1515/eng-2022-0040.
  76. Liu, B. Luo, X. He, Z. Wang, and R. Mai, Analysis of compensation topology with constant-voltage/current output for multiple loads capacitive power transfer system, CSEE J. Power Energy Syst., (2023) 1-12. https://doi.org/10.17775/CSEEJPES.2021.07100
  77. Zhao, Z. Tian, X. Zhang, Y. Qiu, L. Li, P. Chen, F. Yang, X. Wu, and G. Xu, Nonresonant Compensation Optimization for Efficiency Improvement of Wireless Power Transfer System With Relay Coil, IEEE Trans. Power Electron., 39 (2024) 2835-2845. https://doi.org/10.1109/TPEL.2023.3328939
  78. Ghadeer, N. Rezaei-Hosseinabadi, A. Tabesh, and S. A. Khajehoddin, Improving Wireless Power Transfer Efficiency Considering Rectifier Input Impedance and Load Quality Factor, IEEE Access, 11 (2023) 61738-61747. https://doi.org/10.1109/ACCESS.2023.3287331
  79. Yao and W. Zhong, General Model and Analysis of Misalignment Characteristics of Fixed-Frequency WPT Systems, IEEE Trans. Power Electron., 38 (2023) 13315-13328. https://doi.org/10.1109/TPEL.2023.3301655
  80. Wang, M. Leach, E. G. Lim, Z. Wang, and Y. Huang, Investigation of magnetic resonance coupling circuit topologies for wireless power transmission, Microw. Opt. Technol. Lett., 61 (2019) 1755-1763. https://doi.org/10.1002/mop.31803.
  81. I. Kamarudin, A. Ismail, A. Sali, M. Y. Ahmad, I. Ismail, and K. Navaie, 5G Magnetic Resonance Coupling Planar Spiral Coil Wireless Power Transfer, Trends Sci., 20 (2023) 3444-3444. https://doi.org/10.48048/tis.2023.3444.
  82. F. Mahmood, S. L. Mohammed, and S. K. Gharghan, Ultrasound sensor-based wireless power transfer for low-power medical devices, J. Low Power Electron. Appl., 9 (2019) 20. https://doi.org/10.3390/jlpea9030020.
  83. Jiang and J. Wu, Emerging ultrasonic bioelectronics for personalized healthcare, Prog. Mater. Sci., 136 (2023) 101110. https://doi.org/10.1016/j.pmatsci.2023.101110.
  84. Q. Lee, W. Youm, G. Hwang, K. S. Moon, and Y. Ozturk, Resonant ultrasonic wireless power transmission for bio-implants, in Active and Passive Smart Structures and Integrated Systems 2014, SPIE, 9057 (2014) 169-177. https://doi.org/10.1117/12.2046600.
  85. Zhu, S. R. Moheimani, and M. R. Yuce, A 2-DOF MEMS ultrasonic energy harvester, IEEE Sens. J., 11 (2010) 155-161 https://doi.org/10.1109/JSEN.2010.2053922.
  86. Ozeri and D. Shmilovitz, Ultrasonic transcutaneous energy transfer for powering implanted devices, Ultrasonics, 50 (2010) 556-566. https://doi.org/10.1016/j.ultras.2009.11.004.
  87. C. Chang, M. L. Wang, J. Charthad, M. J. Weber, and A. Arbabian, 27.7 A 30.5 mm3 fully packaged implantable device with duplex ultrasonic data and power links achieving 95kb/s with< 10− 4 BER at 8.5 cm depth, in ISSCC, San Francisco, CA, USA, 5-9 Feb 2017, 460-461. https://doi.org/10.1109/ISSCC.2017.7870460.
  88. Zhao, R. Ghannam, M. Yuan, H. Tam, M. Imran, and H. Heidari, Design, test and optimization of inductive coupled coils for implantable biomedical devices, J. Low Power Electron., 15 (2019) 76-86. https://doi.org/10.1166/jolpe.2019.1597.
  89. Javan-Khoshkholgh, J. C. Sassoon, and A. Farajidavar, A wireless rechargeable implantable system for monitoring and pacing the gut in small animals, Nara, Japan, IEEE Biomedical Circuits and Systems Conference, 2019, 1-4. https://doi.org/10.1109/BIOCAS.2019.8919125.
  90. M. Omran, S. Mutashar, and A. Ezzulddin, Design of An (8× 8) mm2 Efficient Inductive Power Link for Medical Applications, Al-Najef, Iraq, 27-28 Aug., 2019 2nd Int. Conf. on Engineering Technology and its Applicationspp, 2019, 61-66. https://doi.org/10.1109/IICETA47481.2019.9012992.
  91. W. Leung, J. Lee, S. Li, S. Yu, C. Kilfovle, L. Larson, A. Nurmikko, and F. Laiwalla, A CMOS distributed sensor system for high-density wireless neural implants for brain-machine interfaces, in ESSCIRC, Dresden, Germany, 3-6 Sept. 2018: ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference, 2018, 230-233. https://doi.org/10.1109/ESSCIRC.2018.8494335.
  92. -L. Yang, C.-K. Chang, S.-Y. Lee, S.-J. Chang, and L.-Y. Chiou, Efficient four-coil wireless power transfer for deep brain stimulation, IEEE Trans. Microw. Theory Tech., 65 (2017) 2496-2507. https://doi.org/10.1109/TMTT.2017.2658560.
  93. A. Mirbozorgi, P. Yeon, and M. Ghovanloo, Robust wireless power transmission to mm-sized free-floating distributed implants, IEEE Trans. Biomed. Circuits Syst., 11 (2017) 692-702. https://doi.org/10.1109/TBCAS.2017.2663358.
  94. K. Alghrairi, N. B. Sulaiman, R. B. M. Sidek, and S. Mutashar, Optimization of spiral circular coils for bio-implantable micro-system stimulator at 6.78 MHz ISM band, ARPN J. Eng. Appl. Sci., 11 (2016) 7046-7054.
  95. Kiani, B. Lee, P. Yeon, and M. Ghovanloo, A Q-modulation technique for efficient inductive power transmission, IEEE J. Solid-State Circuits, 50 (2015) 2839-2848. https://doi.org/10.1109/JSSC.2015.2453201.
  96. Mutashar, M. A. Hannan, S. A. Samad, and A. Hussain, Design of spiral circular coils in wet and dry tissue for bio-implanted micro-system applications, Prog. Electromagn. Res., 32 (2013) 181-200. http://dx.doi.org/10.2528/PIERM13052707.
  97. Aldaoud, J.-M. Redoute, K. Ganesan, G. S. Rind, S. E. John, S. M. Ronayne, N. L. Opie, D. J. Garrett, and S. Prawer, Near-field wireless power transfer to stent-based biomedical implants, IEEE J. Electromagn. RF Microw. Med. Biol., 2 (2018) 193-200. https://doi.org/10.1109/JERM.2018.2833386.
  98. Erfani, F. Marefat, and P. Mohseni, Biosafety considerations of a capacitive link for wireless power transfer to biomedical implants, in BioCAS, Cleveland, OH, USA, 17-19 Oct. 2018 IEEE Biomedical Circuits and Systems Conference, 2018, 1-4. https://doi.org/10.1109/BIOCAS.2018.8584827.
  99. Koruprolu, S. Nag, R. Erfani, and P. Mohseni, Capacitive wireless power and data transfer for implantable medical devices, in BioCAS, Cleveland, OH, USA, 17-19 Oct. 2018 IEEE Biomedical Circuits and Systems Conference, 2018, 1-4. https://doi.org/10.1109/BIOCAS.2018.8584824.
  100. Erfani, F. Marefat, A. M. Sodagar, and P. Mohseni, Transcutaneous capacitive wireless power transfer (C-WPT) for biomedical implants, in ISCAS, Baltimore, MD, USA, 28-31 May 2017: IEEE Int. Symp. Circuits and Systems , 2017, 1-4. https://doi.org/10.1109/ISCAS.2017.8050940.
  101. Xu, Q. Zhang, and X. Li, Implantable magnetic resonance wireless power transfer system based on 3D flexible coils, Sustainability, 12 (2020) 4149. https://doi.org/10.3390/su12104149.
  102. Ding, Y. Yu, H. Lin, and J. Xie, Wireless power transfer at sub-GHz frequency for capsule endoscope, Prog. Electromagn. Res., C, 66 (2016) 55-61. http://dx.doi.org/10.2528/PIERC16042302.
  103. Liu, Y. Yang, D. Jiang, X. Ruan, and X. Chen, Modeling and optimization of magnetically coupled resonant wireless power transfer system with varying spatial scales, IEEE Trans. Power Electron., 32 (2016) 3240-3250. https://doi.org/10.1109/TPEL.2016.2581840.
  104. Na, H. Jang, H. Ma, and F. Bien, Tracking optimal efficiency of magnetic resonance wireless power transfer system for biomedical capsule endoscopy, IEEE Trans. Microw. Theory Tech., 63 (2014) 295-304. https://doi.org/10.1109/TMTT.2014.2365475.
  105. H. Song, A. Kim, and B. Ziaie, Omnidirectional ultrasonic powering for millimeter-scale implantable devices, IEEE Trans. Biomed. Eng., 62 (2015) 2717-2723. https://doi.org/10.1109/TBME.2015.2444854.
  106. Q. Lee, W. Youm, G. Hwang, and K. S. Moon, Wireless power transferring and charging for implantable medical devices based on ultrasonic resonance, in Proceedings of the 22nd International Congress on Sound and Vibration, Florence, Italy, 8, 2015, 1-7. https://doi.org/10.3390/s20123487
  107. Mazzilli, C. Lafon, and C. Dehollain, A 10.5 cm ultrasound link for deep implanted medical devices, IEEE Trans. Biomed. Circuits Syst., 8 (2014) 738-750. https://doi.org/10.1109/TBCAS.2013.2295403.
  108. Kiani, M., and Ghovanloo, M., Centimeter-range inductive radios, in Ultra-Low-Power Short-Range Radios, Springer International Publishing Switzerland , 313-341, 2015.
  109. Trigui, M. Ali, S. Hached, J.-P. David, A. C. Ammari, Y. Savaria, and M. Sawan, Generic wireless power transfer and data communication system based on a novel modulation technique, IEEE Trans. Circuits Syst., 67 (2020) 3978-3990. https://doi.org/10.1109/TCSI.2020.3010308.
  110. Trigui, M. Ali, A. C. Ammari, Y. Savaria, and M. Sawan, Energy efficient generic demodulator for high data transmission rate over an inductive link for implantable devices, IEEE Access, 7 (2019) 159379-159389. https://doi.org/10.1109/ACCESS.2019.2950622.
  111. Trigui, M. Ali, A. C. Ammari, Y. Savaria, and M. Sawan, A 1.5-pJ/bit, 9.04-Mbit/s carrier-width demodulator for data transmission over an inductive link supporting power and data transfer, IEEE Trans. Circuits Syst. II Express, 65 (2018) 1420-1424. https://doi.org/10.1109/TCSII.2018.2864700.
  112. A. Hannan, S. M. Abbas, S. A. Samad, and A. Hussain, Modulation techniques for biomedical implanted devices and their challenges, Sensors, 12 (2011) 297-319. https://doi.org/10.3390/s120100297.
  113. -Y. Lee, J.-H. Hong, C.-H. Hsieh, M.-C. Liang, and J.-Y. Kung, A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices, IEEE Trans. Biomed. Circuits Syst., 7 (2012) 256-265. https://doi.org/10.1109/TBCAS.2012.2212276.
  114. Sharma and S. Rana, Comprehensive study of radio over fiber with different modulation techniques–a review, Int. j. comput. appl., 170 (2017) 22-25. https://doi.org/10.5120/ijca2017914829.
  115. Mazzilli and C. Dehollain, 184 μW ultrasonic on–off keying/amplitude-shift keying demodulator for downlink communication in deep implanted medical devices, Electron. Lett., 52 (2016) 502-504. https://doi.org/10.1049/el.2015.4267.
  116. Lu and M. Sawan, An 8 Mbps data rate transmission by inductive link dedicated to implantable devices, in 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18-21 May 2008, 3057-3060. https://doi.org/10.1109/ISCAS.2008.4542103.
  117. Cirmirakis, D. Jiang, A. Demosthenous, N. Donaldson, and T. Perkins, A fast passive phase shift keying modulator for inductively coupled implanted medical devices, in ESSCIRC, Bordeaux, France, 17-21 Sept. 2012, 301-304. https://doi.org/10.1109/ESSCIRC.2012.6341314.
  118. Gozalpour and M. Yavari, An improved FSK-modulated class-E power and data transmitter for biomedical implants, Int. J. Electron Commun., 170 (2023) 154786. https://doi.org/10.1016/j.aeue.2023.154786.
  119. Ye, Y. Wang, Y. Xiang, L. Lyu, H. Min, and C.-J. R. Shi, A wireless power and data transfer receiver achieving 75.4% effective power conversion efficiency and supporting 0.1% modulation depth for ASK demodulation, IEEE J. Solid-State Circuits, 55 (2019) 1386-1400. https://doi.org/10.1109/JSSC.2019.2943871.
  120. Desai, C. Juvekar, S. Chandak, and A. P. Chandrakasan, An actively detuned wireless power receiver with public key cryptographic authentication and dynamic power allocation, IEEE J. Solid-State Circuits, 53 (2017) 236-246. https://doi.org/10.1109/JSSC.2017.2737562.
  121. -P. Lin, C.-Y. Yeh, P.-Y. Huang, Z.-Y. Wang, H.-H. Cheng, Y.-T. Li, C.-F. Chuang, P.-C. Huang, K.-T. Tang, and H.-P. Ma, A battery-less, implantable neuro-electronic interface for studying the mechanisms of deep brain stimulation in rat models, IEEE Trans. Biomed. Circuits Syst., 10 (2015) 98-112. https://doi.org/10.1109/TBCAS.2015.2403282.
  122. I. AL-Kalbani, M. R. Yuce, and J.-M. Redouté, A study of reliable bio-telemetry, efficient powering and electromagnetic exposure in implantable neural systems, Biomed. Eng. Lett., 3 (2013) 32-38. https://doi.org/10.1007/s13534-013-0085-z
  123. G. Kilinc, M. A. Ghanad, F. Maloberti, and C. Dehollain, Short range remote powering of implanted electronics for freely moving animals, in NEWCAS, Paris, France, 16-19 June 2013: 2013 IEEE 11th International New Circuits and Systems Conference, 2013, 1-4. https://doi.org/10.1109/NEWCAS.2013.6573608.
  124. Adeeb, A. Islam, M. Haider, F. Tulip, M. Ericson, and S. Islam, An inductive link-based wireless power transfer system for biomedical applications, Act. Passiv. Electron., 2012 (2012). https://doi.org/10.1155/2012/879294.
  125. Simard, M. Sawan, and D. Massicotte, High-speed OQPSK and efficient power transfer through inductive link for biomedical implants, , IEEE Trans. Biomed. Circuits Syst., 4 (2010) 192-200. https://doi.org/10.1109/TBCAS.2009.2039212.
  126. Ali, T. J. Ahmad, and S. A. Khan, Inductive link design for medical implants, IEEE Symposium on Industrial Electronics & Applications, Kuala Lumpur, 2009 IEEE Symp. Industrial Electronics & Applications , 2 (2009) 694-699. https://doi.org/10.1109/ISIEA.2009.5356376.
  127. A. Khan and A.-S. K. Pathan, The state-of-the-art wireless body area sensor networks: A survey, Int. J. Distrib. Sens. Netw., 14 (2018). https://doi.org/10.1177/1550147718768994.
  128. Pycroft and T. Z. Aziz, Security of implantable medical devices with wireless connections: The dangers of cyber-attacks, Expert Rev. Med. Devices, 15 (2018) 403-406. https://doi.org/10.1080/17434440.2018.1483235.
  129. Guag, B. Addissie, and D. Witters, Personal medical electronic devices and walk-through metal detector security systems: assessing electromagnetic interference effects, Biomed. Eng. Online, 16 (2017) 1-15. https://doi.org/10.1186/s12938-017-0328-9.
  130. Yilmaz, R. Foster, and Y. Hao, Detecting vital signs with wearable wireless sensors, Sensors, 10 (2010) 10837-10862 doi: https://doi.org/10.3390/s101210837.
  131. Sadtler, A. Singh, M. T. Wolf, X. Wang, D. M. Pardoll, and J. H. Elisseeff, Design, clinical translation and immunological response of biomaterials in regenerative medicine, Nat. Rev. Mater., 1 (2016) 1-17. https://doi.org/10.1038/natrevmats.2016.40.
  132. Sabiri, H. Bouyghf, and A. Raihani, Optimal Sizing of RF Integrated Inductors for Power Transfer of Implantable Biosensors, in IECB, online, Proceedings, 60 (2020) 30. https://doi.org/10.3390/IECB2020-07053.
  133. Mariappan, Recent trends in nanotechnology applications in surgical specialties and orthopedic surgery, Biomed. Pharmacol. J., 12 (2019) 1095-1127. https://dx.doi.org/10.13005/bpj/1739.
  134. Rathore, A. Mohamed, A. Al-Ali, X. Du, and M. Guizani, A review of security challenges, attacks and resolutions for wireless medical devices, 2017 13th International Wireless Communications and Mobile Computing Conference, IEEE, 2017, 1495-1501. https://doi.org/10.1109/IWCMC.2017.7986505.
  135. B. Fadhel, S. Ktata, S. Rahmani, and K. Al-Haddad, Near-field Wireless Power Transfer is a promising approach to Power-up Active Implants, 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), IEEE, 2019, 399-404. https://doi.org/10.1109/STA.2019.8717309.
  136. Ben Fadhel, S. Ktata, K. Sedraoui, S. Rahmani, and K. Al-Haddad, A modified wireless power transfer system for medical implants, Energies., 12 (2019) 1890. https://doi.org/10.3390/en12101890.
  137. -J. Yoon and S.-W. Kim, Nanogenerators to power implantable medical systems, Joule, 4 (2020) 1398-1407. https://doi.org/10.1016/j.joule.2020.05.003.
  138. Biswas, N. Tasneem, J. Hyde, M. Sinclair, and I. Mahbub, Miniaturized wireless power transfer module design for brain optoelectronic implant, IEEE Trans. Biomed. Circuits Syst., Philadelphia, PA, USA, 14-15 June 2018, 163-165. https://doi.org/10.1109/IMBIOC.2018.8428929.
  139. S. Kim, M. Jeong, S. Hong, B. Lim, and S. I. Park, Fully Implantable Low-Power High Frequency Range Optoelectronic Devices for Dual-Channel Modulation in the Brain, Sensors, 20 (2020) 3639. https://doi.org/10.3390/s20133639
  140. Shin, A. M. Gomez, R. Al-Hasani, Y. R. Jeong, J. Kim, Z. Xie, A. Banks, S. M. Lee, S. Y. Han, and C. J. Yoo, Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics, Neuron., 93 (2017) 509-521. e3. http://dx.doi.org/10.1016/j.neuron.2016.12.031.
  141. K. Samineni, J. Yoon, K. E. Crawford, Y. R. Jeong, K. C. McKenzie, G. Shin, Z. Xie, S. S. Sundaram, Y. Li, and M. Y. Yang, Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics, Pain,158 (2017) 2108. https://doi.org/10.1097%2Fj.pain.0000000000000968.
  142. G. Grajales-Reyes, B. A. Copits, F. Lie, Y. Yu, R. Avila, S. K. Vogt, Y. Huang, A. R. Banks, J. A. Rogers, and R. W. Gereau, Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice, Nat. Protoc,16 (2021) 3072-3088. https://doi.org/10.1038/s41596-021-00532-2.
  143. Magjarević and B. Ferek-Petrić, Implantable cardiac pacemakers–50 years from the first implantation, Slov. Med. J., 79 (2010). https://vestnik.szd.si/index.php/ZdravVest/article/view/224.
  144. Beck, W. E. Boden, S. Patibandla, D. Kireyev, V. Gupta, F. Campagna, M. E. Cain, and J. E. Marine, 50th Anniversary of the first successful permanent pacemaker implantation in the United States: historical review and future directions, Am. J. Cardiol., 106 (2010) 810-818. https://doi.org/10.1016/j.amjcard.2010.04.043.
  145. Xiao, K. Wei, D. Cheng, and Y. Liu, Wireless charging system considering eddy current in cardiac pacemaker shell: Theoretical modeling, experiments, and safety simulations, IEEE Trans. Ind. Electron., 64 (2016) 3978-3988. https://doi.org/10.1109/TIE.2016.2645142.
  146. Ko, W. and Feng, P.-L., MEMS wireless implantable systems: historical review and perspectives, in Handbook of Mems for Wireless and Mobile Applications, Case Western Reserve University, USA: Elsevier, 401-423, 2014.
  147. S. Ho, A. J. Yeh, E. Neofytou, S. Kim, Y. Tanabe, B. Patlolla, R. E. Beygui, and A. S. Poon, Wireless power transfer to deep-tissue microimplants, PNAS, 111 (2014) 7974-7979. https://doi.org/10.1073/pnas.1403002111.
  148. Cruciani, T. Campi, F. Maradei, and M. Feliziani, Numerical simulation of wireless power transfer system to recharge the battery of an implanted cardiac pacemaker, in 2014 Int. Symp. Electromagnetic Compatibility, Raleigh, 2014, 44-47. https://doi.org/10.1109/EMCEurope.2014.6930874.
  149. Campi, S. Cruciani, F. Palandrani, V. De Santis, A. Hirata, and M. Feliziani, Wireless power transfer charging system for AIMDs and pacemakers, IEEE Trans. Microw. Theory Tech., 64 (2016) 633-642. https://doi.org/10.1109/TMTT.2015.2511011.
  150. Wang, Q. Cui, P. Abiri, M. Roustaei, E. Zhu, Y.-R. Li, K. Wang, S. Duarte, L. Yang, R. Ebrahimi, M. Bersohn, J. Chen, and T. K. Hsiai, A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy, Sci. Adv., 9 (2023). https://doi.org/10.1126/sciadv.adj0540.
  151. I. Mahmood, S. K. Gharghan, M. A. Eldosoky, and A. M. Soliman, Wireless charging for cardiac pacemakers based on class‐D power amplifier and a series–parallel spider‐web coil, Int. J. Circuit Theory Appl., 51 (2022) 1-17. https://doi.org/10.1002/cta.3420.
  152. R. Basar, M. Y. Ahmad, J. Cho, and F. Ibrahim, Application of wireless power transmission systems in wireless capsule endoscopy: An overview, Sensors.,14 (2014) 10929-10951. https://doi.org/10.3390/s140610929.
  153. -M. Singeap, C. Stanciu, and A. Trifan, Capsule endoscopy: the road ahead, WJG, World J. Gastroenterol, 22 (2016) 369. https://doi.org/10.3748/wjg.v22.i1.369
  154. R. Basar, M. Y. Ahmad, J. Cho, and F. Ibrahim, An improved wearable resonant wireless power transfer system for biomedical capsule endoscope, IEEE Trans. Ind. Electron., 65 (2018) 7772-7781. https://doi.org/10.1109/TIE.2018.2801781.
  155. I. Mahmood, S. K. Gharghan, M. A. Eldosoky, and A. M. Soliman, Wireless charging for cardiac pacemakers based on class‐D power amplifier and a series–parallel spider‐web coil, Int. J. Circuit Theory Appl., 51 (2023) 1-17. https://doi.org/10.1002/cta.3420.
  156. Duan, L. J. Xu, S. Gao, and W. Geyi, Integrated Design of Wideband Omnidirectional Antenna and Electronic Components for Wireless Capsule Endoscopy Systems, IEEE Access., 6 (2018) 29626-29636. https://doi.org/10.1109/ACCESS.2018.2840689.
  157. -M. Lin, H.-W. Wu, C.-Y. Hung, S.-J. Chang, and R. Liu, Dual-Polarized Transparent Antenna and Its Application for Capsule Endoscopy System, Electronics,12 (2023) 3124. https://doi.org/10.3390/electronics12143124.
  158. Sharif, M. A. and Sodagar, M. A., Capacitive links for power and data telemetry to implantable biomedical microsystems, in Handbook of Biochips: Springer, New York, NY, 2022.
  159. Hamed and M. Maqsood, SAR calculation & temperature response of human body exposure to electromagnetic radiations at 28, 40 and 60 GHz mmWave frequencies, Prog. Electromagn. Res., 73 (2018) 47-59. http://dx.doi.org/10.2528/PIERM18061102.
  160. Mutashar, M. A. Hannan, S. A. Samad, and A. Hussain, Analysis and optimization of spiral circular inductive coupling link for bio-implanted applications on air and within human tissue, Sensors., 14 (2014) 11522-11541. https://doi.org/10.3390/s140711522.
  161. R. Khan, S. K. Pavuluri, G. Cummins, and M. P. Desmulliez, Wireless power transfer techniques for implantable medical devices: A review, Sensors, 20 (2020) 3487. https://doi.org/10.3390/s20123487.
  162. Kaniusas, E., Biomedical signals and sensors III (Biological and Medical Physics, Biomedical Engineering), Springer Cham, 2019.
  163. M. A. Shah, M. Zada, J. Nasir, O. Owais, and H. Yoo, Electrically-Small Antenna With Low SAR for Scalp and Deep Tissue Biomedical Devices, IEEE Access.,10 (2022) 90971-90981. https://doi.org/10.1109/ACCESS.2022.3201896.
  164. A. Shah, A. Basir, Y. Cho, and H. Yoo, Safety Analysis of Medical Implants in the Human Head Exposed to a Wireless Power Transfer System, IEEE Trans. Electromagn. Compat., 64 (2022) 640-649. https://doi.org/10.1109/TEMC.2022.3144468.
  165. Saidi, K. Nouri, B. S. Bouazza, K. Becharef, A. Cherifi, and T. Abes, E-shape metamaterials embedded implantable antenna for ISM-band biomedical applications, Res. Biomed. Eng., 38 (2022) 351-368. https://doi.org/10.1007/s42600-021-00191-y.
  166. Lyu, M. John, D. Burkland, B. Greet, A. Post, A. Babakhani, and M. Razavi, Synchronized Biventricular Heart Pacing in a Closed-chest Porcine Model based on Wirelessly Powered Leadless Pacemakers, Sci. Rep., 10 (2020) 2067. https://doi.org/10.1038/s41598-020-59017-z.
  167. V. Naik, Design and analysis of circular microstrip patch probe array for precise specific absorption rate measurement at quad-band, Int. J. Microw. Wirel. Technol., 15 (2023) 120-128. https://doi.org/10.1017/S1759078722000101.
  168. Turgut and B. K. Engiz, Analyzing the SAR in Human Head Tissues under Different Exposure Scenarios, Appl. Sci., 13 (2023) 6971. https://doi.org/10.3390/app13126971.
  169. C. Xiao, S. Hao, D. Cheng, and C. Liao, Safety Enhancement by Optimizing Frequency of Implantable Cardiac Pacemaker Wireless Charging System, IEEE Trans. Biomed. Circuits Syst., 16 (2022) 372-383. https://doi.org/10.1109/TBCAS.2022.3170575.
  170. P. G. v. Nunen, R. M. C. Mestrom, and H. J. Visser, Wireless Power Transfer to Biomedical Implants Using a Class-E Inverter and a Class-DE Rectifier, IEEE J. Electromagn. RF Microw. Med. Biol., 7 (2023) 202-209. https://doi.org/10.1109/JERM.2023.3267042.
  171. Seok, Polymer-Based Biocompatible Packaging for Implantable Devices: Packaging Method, Materials, and Reliability Simulation, Micromachines, 12 (2021) 1020. https://doi.org/10.3390/mi12091020