Document Type : Research Paper

Authors

Materials Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

This study uses electro-spinning techniques to create a poly(vinyl alcohol)-chitosan-zinc oxide nanoparticles (PVA+CS)+ZnO NPs system in three concentrations of ZnO for application as composite nanofibers for wound treatment applications and   Employing the Taguchi technique to optimize the mechanical characteristics via a four-level experimental design process (L16). Numerous techniques have been utilized to characterize the nanofibrous scaffolds: contact angle measurement, cytotoxicity testing, proliferation testing, evaluation of antimicrobial activity, Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersion X-ray Spectroscopy (EDX), and a comparative experimental study involving the determination of hardness using the Nanoindentation method for (PVA+CS)+ZnO. The ideal combination for adding ZnO as nanoparticles was found to be (PVA+CS)+0.6 ZnO, with a flow rate of 0.5 mL/hr, an applied voltage of 18 kV, and a needle tip-to-collector distance of 15 cm (position). This resulted in the smallest fiber diameter (48 nm) with a smooth and uniform distribution. As a consequence, (PVA+CS)+ZnO can be regarded as non-toxic in accordance with the criteria. The methyl thiazole tetrazolium (MTT) assay was used to evaluate the cell viability of  L929 (cell cultures for skin). It significantly affects cell viability, achieving 50% in less than 24 hours, which means cell growth through 24 hours is necessary for embryonic development, tissue repair, and regulation of cell division in case of wound healing. Exhibiting findings of inhibition zone diameter in antibacterial activity test exceeding 20 mm. According to the results, (PVA+CS)+0.6 ZnO's hydrophilic properties showed a well-connected porous structure and made it easier for nutrients and oxygen to be exchanged, encouraging cellular activity. After evaluating the mechanical characteristics of each specimen, the main determinants of these characteristics are determined using a Taguchi orthogonal array L16 design. The results of this study suggest that (PVA+CS)+0.6 ZnO could be a good biomedical material for skin tissue engineering applications.

Graphical Abstract

Highlights

  • Bio-composite materials were fabricated for wound healing in three concentrations.
  • Biodegradable polymers were used to create electrospun fibers.
  • A blend of polyvinyl alcohol and chitosan, incorporated with nanoparticles, was used to modify mechanical properties.

Keywords

Main Subjects

  1. Haider, S. Haider, and I. K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arab. J. Chem., 11 (2018) 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015
  2. K. A. Mohammed, M. R. Mohammad, M. S. Jabir, and D. S. Ahmed, Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes, IOP Conf. Ser. Mater. Sci. Eng., 757 (2020) 012028. https://doi.org/10.1088/1757-899X/757/1/012028
  3. Baghaie, M. T. Khorasani, A. Zarrabi, and J. Moshtaghian, Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material, J. Biomater. Sci. Polym. Ed., 28 (2017) 2220–2241. https://doi.org/10.1080/09205063.2017.1390383
  4. Augustine, H. Malik, D. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal and S. Thomas, Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties, J. Polym. Res., 21 (2014). https://doi.org/10.1007/s10965-013-0347-6
  5. Zhang, W. Xia, P. Liu, Q. Cheng, T. Tahirou, W. Gu and B. Li, Chitosan modification and pharmaceutical/biomedical applications, Mar. Drugs, 8 (2010) 1962–1987. https://doi.org/10.3390/md8071962
  6. Natrayan , V. Arul Kumar, S. Baskara Sethupathy, S. Sekar, P. Patil, G. Velmurugan, and S.Thanappan, Effect of Nano TiO2 Filler Addition on Mechanical Properties of Bamboo/Polyester Hybrid Composites and Parameters Optimized Using Grey Taguchi Method, Adsorpt. Sci. Technol., 2022 (2022). https://doi.org/10.1155/2022/6768900
  7. Gutha, J. L. Pathak, W. Zhang, Y. Zhang, and X. Jiao, Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO), Int. J. Biol. Macromol., 103 (2017) 234–241. https://doi.org/10.1016/j.ijbiomac.2017.05.020
  8. Abbas, M. Arshad, M. K. Rafique, A. A. Altalhi, D. I. Saleh, M. A. Ayub, S. Sharife, M. Riaz, S. Z. Alshawwa, N. Masood h, A. Nazir and M. Iqbal, Chitosan-polyvinyl alcohol membranes with improved antibacterial properties contained Calotropis procera extract as a robust wound healing agent, Arab. J. Chem., 15 (2022) 103766. https://doi.org/10.1016/j.arabjc.2022.103766
  9. Ahmed, M. Tariq, I. Ali, R.Asghar, P. Khanam, R. Augustine and A. Hasan., Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing, Int. J. Biol. Macromol., 120 (2018) 385–393. https://doi.org/10.1016/j.ijbiomac.2018.08.057
  10. Kharaghani, M. Khan, Y. Tamada, H. Ogasawara, Y. Inoue, Y. Saito, M. Hashmi, and I.Kim., Fabrication of electrospun antibacterial PVA/Cs nanofibers loaded with CuNPs and AgNPs by an in-situ method, Polym. Test., 72 (2018) 315–321. https://doi.org/10.1016/j.polymertesting.2018.10.029
  11. Reid, A. Donald and A. Callanan, Electrospun fibre diameter and its effects on vascular smooth muscle cells, J. Mater. Sci. Mater. Med., 32 (2021) 131. https://doi.org/10.1007%2Fs10856-021-06605-8
  12. Jahan, R. D. Mathad, and S. Farheen, Effect of mechanical strength on chitosan-pva blend through ionic crosslinking for food packaging application, Mater. Today Proc., 3 (2016) 3689–3696. https://doi.org/10.1016/j.matpr.2016.11.014
  13. Qiu and A. N. Netravali, A Composting Study of Membrane-Like Polyvinyl Alcohol Based Resins and Nanocomposites, J. Polym. Environ., 21 (2013) 658–674. https://doi.org/10.1007/s10924-013-0584-0
  14. Ko, J. Lee, J. Lee, B. Son, S. Jang, L. Aguilar, Y. Oh, C. Park and C. Kim., Analysis of drug release behavior utilizing the swelling characteristics of cellulosic nanofibers, Polymers (Basel)., 11 (2019). https://doi.org/10.3390/polym11091376
  15. A. Jihad, F. T. M. Noori, M. S. Jabir, S. Albukhaty, F. A. Almalki, and A. A. Alyamani, Polyethylene glycol functionalized graphene oxide nanoparticles loaded with nigella sativa extract: A smart antibacterial therapeutic drug delivery system, Molecules, 26 (2021). https://doi.org/10.3390/molecules26113067
  16. Bagheri, M. Validi, A. Gholipour, P. Makvandi, and E. Sharifi, Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect, Bioeng. transl. med., 7 (2022). https://doi.org/10.1002/btm2.10254
  17. Karavasili et al., Physico-mechanical and finite element analysis evaluation of 3D printable alginate-methylcellulose inks for wound healing applications, Carbohydr. Polym., 247 (2020) 116666. https://doi.org/10.1016/j.carbpol.2020.116666
  18. S. Jabir et al., Inhibition of Staphylococcus aureus α-Hemolysin Production Using Nanocurcumin Capped Au@ZnO Nanocomposite, Bioinorg. Chem. Appl., 2022 (2022) . https://doi.org/10.1155/2022/2663812
  19. A. Kadhim, Z. J. Abdul Ameer, and A. B. Alzubaidi, Investigation of Chitosan Film Degradation in Tissue Engineering Applications, IOP Conf. Ser. Mater. Sci. Eng., 671 (2020). https://doi.org/10.1088/1757-899X/671/1/012060
  20. I. Bhat, K. Imtiyaz, M. M. A. Rizvi, S. Ikram, and D. K. Shin, Comparative Study of ZnO-and-TiO2-Nanoparticles-Functionalized Polyvinyl Alcohol/Chitosan Bionanocomposites for Multifunctional Biomedical Applications, Polym., 15 (2023). https://doi.org/10.3390/polym15163477
  21. Semnani, 7-Geometrical characterization of electrospun nanofibers, Electrospun Nanofibers, (2017) 151–180. https://doi.org/10.1016/B978-0-08-100907-9.00007-6
  22. Al-Abduljabbar and I. Farooq, Electrospun Polymer Nanofibers: Processing, Properties, and Applications, Polym., (Basel)., 15 (2023). https://doi.org/10.3390/polym15010065
  23. Alipour, A. M. Shoushtari, and A. Kaflou, Electrospun PMMA/AB nanofiber composites for hydrogen storage applications, E-Polymers, 14 (2014) 305–311. https://doi.org/10.1515/epoly-2014-0071
  24. Kanimozhi, S. Khaleel Basha, V. Sugantha Kumari, K. Kaviyarasu, and M. Maaza, In vitro cytocompatibility of chitosan/PVA/methylcellulose – Nanocellulose nanocomposites scaffolds using L929 fibroblast cells, Appl. Surf. Sci., 449 (2018) 574–583. https://doi.org/10.1016/j.apsusc.2017.11.197
  25. Santiago-Castillo et al., Effect on the processability, structure and mechanical properties of highly dispersed in situ ZnO:CS nanoparticles into PVA electrospun fibers, J. Mater. Res. Technol., 11 (2021) 929–945. https://doi.org/10.1016/j.jmrt.2021.01.049
  26. Mairpady, A. H. I. Mourad, and M. S. Mozumder, Statistical and machine learning-driven optimization of mechanical properties in designing durable hdpe nanobiocomposites, Polymers (Basel)., 13 (2021). https://doi.org/10.3390/polym13183100
  27. A. Macías, L. Yate, E. Coy, W. Aperador, and J. J. Olaya, Insights and optimization of the structural and mechanical properties of TiWSiN coatings using the Taguchi method, Appl. Surf. Sci., 558 (2021) 149877. https://doi.org/10.1016/j.apsusc.2021.149877
  28. S. Muluh, N. Estella, B. Tamungang, J. N. Ghogomu, and T. D. Noufame, Pt , N co-doped TiO2 ternary nanocomposite associated with activated carbon for the photocatalytic degradation of Methylene blue : optimization and modeling using the taguchi design, 5 (2021) 29–38.
  29. Zayan , A.Rasheed, A.John , M. Khalid, A. Ismail, A. Aabidand, M. Baig., Investigation on rheological properties of water-based novel ternary hybrid nanofluids using experimental and taguchi method, Mater. (Basel), 15 (2022). https://doi.org/10.3390/ma15010028
  30. Daassi, K. Durand, D. Rodrigue, and T. Stevanovic, Optimization of the Electrospray Process to Produce Lignin Nanoparticles for PLA-Based Food Packaging, Polym. (Basel)., 15 (2023). https://doi.org/10.3390/polym15132973