Document Type : Review Paper

Authors

1 Mechanical Engineering Dept., University of Al-Qadisiyah, Al- Dewaniyah, 58001, Iraq.

2 Mechanical Engineering Dept., University of Technology-Iraq, Alsina’a Street, 10066 Baghdad, Iraq.

Abstract

Wind energy has become an easy-to-harness source by converting captured wind currents into electrical energy. Powerful and customizable wind turbines are used to convert wind energy efficiently. However, wind turbine development in terms of structure is still an active area of research aiming at efficiently building capable and long-lasting turbines. Additive manufacturing technology, particularly 3D printing, has revolutionized multiple industries, including its potential to create wind turbine blades with high cost-effectiveness and optimizable shapes and rigid structures. In this review, various 3D printing-based techniques, including Fused Deposition Modelling (FDM), Continuous Fiber Reinforcement (CFR), Stereolithography (SLA), and 3D Printing-enhanced Large-Scale Additive Manufacturing (LSAM), are examined in detail for complex and large-scale wind turbine blade production. Materials used in 3D printing wind turbine blades, such as thermoplastic composites, epoxy resins, and fiber-reinforced polymers, are assessed with a focus on their mechanical strength, durability, and environmental considerations. Furthermore, the importance of design optimization and customization for wind turbine blades, including aerodynamic and structural design optimization, is emphasized. Customization for site-specific conditions, infill structural optimization, and infill printing speed and cost are also discussed. The review highlights the importance of structural optimization in developing efficient and cost-effective 3D-printed wind turbine blades, customization for site-specific conditions, and infill structure. The review also mentions these technologies' challenges, such as material limitations, surface finish quality, size limitations, and structural integrity. Therefore, addressing these challenges to utilize these technologies' potential fully is crucial.

Graphical Abstract

Highlights

  • 3D printing optimizes wind turbine blades for greater cost-effectiveness and durability.
  • The review emphasizes design optimization to enhance aerodynamics and structural efficiency.
  • Challenges such as material limitations and the need for structural integrity are identified.
  • AI and hybrid manufacturing are proposed to address these limitations and reduce costs.

Keywords

Main Subjects

  1. Grujicic, G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, M. Ozen, Multidisciplinary design optimization for glass-fiber epoxy-matrix composite 5 MW horizontal-axis wind-turbine blades, J. Mater .Eng. Perform., 19 (2010) 1116–1127. http://dx.doi.org/10.1007/s11665-010-9596-2
  2. Brown, S. Müller, Z. Dobrotkova, Renewable energy: Markets and prospects by technology, IEA information paper, 2011.
  3. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: Current status, future prospects and their enabling technology, Renew. Sustain. Energy Rev., 39 (2014)748–764. http://dx.doi.org/10.1016/j.rser.2014.07.113
  4. G. Olabi et al, Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array, Sustainability, 15 (2023) 4641- 2023. https://doi.org/10.3390/su15054641
  5. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind energy handbook. John Wiley & Sons, 2011. https://doi.org/10.1002/9781119992714
  6. A. Aladejare, Renewable Energy and Ecological Sustainability in Africa: Does Foreign Debt and Financial Globalisation Matter, 2023. https://doi.org/10.21203/rs.3.rs-2723366/v2
  7. Martinez , G. Iglesias, Global wind energy resources decline under climate change, Energy, 288 (2024)129765. https://doi.org/10.1016/j.energy.2023.129765
  8. Zouboulis, E. P. Koumoulos, A. Karatza, Wind Turbine Blade-Tip Optimization: A Systemic Computational Approach, Processes, 11(2023)1170, 2023. https://doi.org/10.3390/pr11041170
  9. Maheri, Multi-objective optimisation and integrated design of wind turbine blades using WTBM-ANSYS for high fidelity structural analysis, Renew. Energy, 145 (2020) 814–834. https://doi.org/10.1016/j.renene.2019.06.013
  10. Mishnaevsky, K. Branner, H. Petersen, J. Beauson, M. McGugan, B. Sørensen, Materials for wind turbine blades: An overview, Mater., 10 (2017)1285. https://doi.org/10.3390%2Fma10111285
  11. R. Kalagi, R. Patil, N. Nayak, Experimental study on mechanical properties of natural fiber reinforced polymer composite materials for wind turbine blades, Mater .Today. Proc., 5 (2018). 2588–2596. https://doi.org/10.1016/j.matpr.2017.11.043
  12. Jandyal, I. Chaturvedi, I. Wazir, A. Raina, M. Haq, 3D printing–A review of processes, materials and applications in industry 4.0, Sustainable Opera . Comp., 3 (2022) 33–42. https://doi.org/10.1016/j.susoc.2021.09.004
  13. Tofail, E. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Mater. today, 21 (2018) 22–37. https://doi.org/10.1016/j.mattod.2017.07.001
  14. Li, K. Wei, W. Yang, Q. Wang, Improving wind turbine blade based on multi-objective particle swarm optimization, Renew Energy, 161 (2020) 525–542. https://doi.org/10.1016/j.renene.2020.07.067
  15. Ngo, A. Kashani, G. Imbalzano, K. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos B. Eng., 143 (2018)172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
  16. Goh, S. Sing, W. Yeong, A review on machine learning in 3D printing: applications, potential, and challenges, Artif .Intell. Rev., 54 (2021) 63–94. https://doi.org/10.1007/s10462-020-09876-9
  17. Parandoush and D. Lin, “A review on additive manufacturing of polymer-fiber composites,” Compos Struct, vol. 182, pp. 36–53, 2017, doi: 10.1016/j.compstruct.2017.08.088.
  18. Zhu., Realization of circular economy of 3D printed plastics: A review, Polym., 13 (2021) 744. https://doi.org/10.3390/polym13050744
  19. Poole , R. Phillips, Rapid prototyping of small wind turbine blades using additive manufacturing, in 2015 pattern recognition association of South Africa and robotics and mechatronics int.conf., IEEE, (2015) 189–194. https://doi.org/10.1109/RoboMech.2015.7359521
  20. Kafle, E. Luis, R. Silwal, H. Pan, P. Shrestha, A. Bastola, 3D/4D Printing of polymers: Fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA), Polym. ., 13 (2021) 3101. https://doi.org/10.3390/polym1318 3101
  21. Sivamani, M. Nadarajan, R. Kameshwaran, C. Bhatt, M. Premkumar, V. Hariram, Analysis of cross axis wind turbine blades designed and manufactured by FDM based additive manufacturing, Mater .Today ., 33 (2020) 3504 –3509. https://doi.org/10.1016/j.matpr.2020.05.438
  22. L. Shashidhar, A. B. Basavaroodh, S. K. Shashir, A. D. Apsarraj, Design, Development and Testing of Model Wind Turbine Blades Using Additive, 4 (2017) 259–262.
  23. Arivalagan, R. Sappani, R. Čep, M. S. Kumar, Optimization and Experimental Investigation of 3D Printed Micro Wind Turbine Blade Made of PLA Material, Mater., 16 (2023) 2508. https://doi.org/10.3390/ma16062508
  24. Kumar , C. Krishnadas Nair, Current trends of additive manufacturing in the aerospace industry, Adv. Print. Addit. Manuf. Technol., (2017) 39–54. https://doi.org/10.1007/978-981-10-0812-2_4
  25. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Compos B Eng., 80 (2015) 369–378. https://doi.org/10.1016/j.compositesb.2015.06.013
  26. A. Ramírez-Elías, N. Damian-Escoto, K. Choo, M. A. Gómez-Martínez, A. Balvantín-García, and J. A. Diosdado-De la Peña, Structural Analysis of Carbon Fiber 3D-Printed Ribs for Small Wind Turbine Blades, Polymers, 14 (2022) 4925. https://doi.org/10.3390/polym14224925
  27. Kapranos, C. Carney, A. Pola, M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, Comp. Mater. Proc., 5 (2014) 39–67. http://dx.doi.org/10.1016/B978-0-08-096532-1.00539-2
  28. Rahimizadeh, J. Kalman, K. Fayazbakhsh, L. Lessard, Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing, Compos B Eng., 175 (2019) 107101. https://doi.org/10.1016/j.compositesb.2019.107101
  29. Guerrero-Villar, E. Torres-Jimenez, R. Dorado-Vicente, J.I Jiménez-González‏,Development of vertical wind turbines via FDM prototypes, Procedia Eng., 132 (2015) 78–85. https://doi.org/10.1016/j.proeng.2015.12.482
  30. Post, B. Richardson, P. Lloyd, L. Love, S. Nolet, J. Hannan, Additive Manufacturing of Wind Turbine Molds, ORNL/TM-20 (2017).http://www.osti.gov/servlets/purl/1376487/
  31. M Aboushama, S Beyerlein, M Bednarz‏, Evaluation of Continuous Fiber Reinforcement Desktop 3D Printers,2020. http://dx.doi.org/10.13140/RG.2.2.16640.87040
  32. S. Carron, D. Snowberg, P. Murdy, S Hughes‏, Using Large-Scale Additive Manufacturing for Wind Turbine Blade Core Structures Using Large-Scale Additive Manufacturing for Wind Turbine Blade Core Structures, Technical Report, 2023.
  33. Murray, D. Snowberg, D. Berry, R. Beach, S. Rooney, D. Swan, Manufacturing a 9-meter thermoplastic composite wind turbine blade, National Renewable Energy Lab, Golden, CO (United States), 2017. https://doi.org/10.12783/asc2017/15166
  34. Gibson, I. dditive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. springer publication, 2015.
  35. K. Mallick, Fiber-reinforced composites: materials, manufacturing, and design, CRC press, 2007. https://doi.org/10.1201/9781420005981
  36. C. Jacob et al., Technical advances in epoxy technology for wind turbine blade composite fabrication, Proc.tech. conf., 2009.
  37. NREL, Three-Dimensional Printing of Thermoplastic Blades Enables Thermal Welding, Improves Recyclability, 2021. https://www.nrel.gov/news/program/2021/manufacturing-next-generation-wind-turbines.html
  38. Joustra, B. Flipsen, R. Balkenende, Structural reuse of high end composite products: A design case study on wind turbine blades, Resour. Conserv. Recycl., 167 (2021)105393. https://doi.org/10.1016/j.resconrec.2020.105393
  39. Chiriță, P. Bere, R. RĂDOI, L. Dumitrescu, Aspects regarding the use of 3D printing technology and composite materials for testing and manufacturing vertical axis wind turbines, Mater. Plast., 56 (2019) 910-917. https://doi.org/10.37358/MP.19.4.5283
  40. Tong , C. Tong, Advanced Materials Enable Renewable Wind Energy Capture and Generation, Adv. Energy. Mater., (2019) 379– 444. http://dx.doi.org/10.1007/978-3-319-98002-7_6
  41. Mishnaevsky, Sustainable end-of-life management of wind turbine blades: Overview of current and coming solutions, Mater., 14 (2021) 1124. https://doi.org/10.3390/ma14051124
  42. Ferretti et al., Molds with advanced materials for carbon fiber manufacturing with 3D printing technology, Polym., 13 (2021) 3700. https://doi.org/10.3390/polym13213700
  43. Zhong, Processes for environmentally friendly and/or cost-effective manufacturing, Mater. Manuf. Proc., 36 (2021) 987–1009. https://doi.org/10.1080/10426914.2021.1885709
  44. Domnica, C. Ioan, T. Ionut, Structural optimization of composite from wind turbine blades with horizontal axis using finite element analysis, Proc. Technol., 22 (2016) 726–733. https://doi.org/10.1016/j.protcy.2016.01.031
  45. Maalawi , H. Negm, Optimal frequency design of wind turbine blades, J. Wind Eng. Ind. Aerody., 90 (2002) 961–986. https://doi.org/10.1016/S0167-6105(02)00214-3
  46. Song, Y. Ni, Z. Tan, Optimization design, modeling and dynamic analysis for composite wind turbine blade, Proc.Eng., 16 (2011) 369–375. https://doi.org/10.1016/j.proeng.2011.08.1097
  47. Yang, J. Chen, X. Pang, G. Chen, A new aero-structural optimization method for wind turbine blades used in low wind speed areas, Comp. Struct, 207 (2019) 446–459. https://doi.org/10.1016/j.compstruct.2018.09.050
  48. Chen ,C. Yung, Structural optimization of 3 MW wind turbine blades using a two-step procedure, Int. J. Simul. Multidisci. Des. Optim., 4 (2010) 159-165. https://doi.org/10.1051/ijsmdo/2010020
  49. Jureczko , M. Mrówka, Multiobjective Optimization of Composite Wind Turbine Blade, Mater., 15 (2022) 4649. https://doi.org/10.3390/ma15134649
  50. Andrew Ning, R. Damiani, and P. J. Moriarty, Objectives and Constraints for Wind Turbine Optimization, J. Sol. Energy Eng., 136 (2014) 12. https://doi.org/10.1115/1.4027693
  51. Chen, M. Song, X. Zhang, S. Wang, Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm, Renew. Energy, 96 (2016) 676–686. https://doi.org/10.1016/j.renene.2016.05.018
  52. Neto, E. Junior, S. Moreno, H. Ayala, V. Mariani, L. Coelho, Wind turbine blade geometry design based on multi-objective optimization using metaheuristics, Energy, 162 (2018) 645–658. https://doi.org/10.1016/j.energy.2018.07.186
  53. Xudong, W. Shen, W. Zhu, J. Sørensen, C. Jin, Shape optimization of wind turbine blades, Wind Energy: An Int. J.for Progress and Appl. in Wind Power Conv. Technol., 12 (2009) 781–803. https://doi.org/10.1002/we.335
  54. Maki, R. Sbragio, N. Vlahopoulos, System design of a wind turbine using a multi-level optimization approach, Renew .Energy, 43 (2012) 101–110. https://doi.org/10.1016/j.renene.2011.11.027
  55. Liao, X. Zhao, J. Xu, Blade layers optimization of wind turbines using FAST and improved PSO Algorithm, Renew Energy, 42 (2012) 227–233. https://doi.org/10.1016/j.renene.2011.08.011
  56. Bavanish , K. Thyagarajan, Optimization of power coefficient on a horizontal axis wind turbine using bem theory, Renew. Sustain. Energy. Rev., 26 (2013)169–182. https://doi.org/10.1016/j.rser.2013.05.009
  57. Chen, Q. Wang, W. Shen, X. Pang, S. Li, X. Guo, Structural optimization study of composite wind turbine blade, Mater.Design , 46 (2013) 247–255. https://doi.org/10.1016/j.matdes.2012.10.036
  58. Kusiak , H. Zheng, Optimization of wind turbine energy and power factor with an evolutionary computation algorithm, Energy, 35 (2010) 1324–1332. https://doi.org/10.1016/j.energy.2009.11.015
  59. Zhu, X. Cai, P. Pan, R. Gu, Optimization design of spar cap layup for wind turbine blade, Front. Struct. Civ. Eng., 6 (2012) 53–56. https://doi.org/10.1007/s11709-012-0147-9
  60. Muheisen, M. Yass, I. Irthiea, Enhancement of horizontal wind turbine blade performance using multiple airfoils sections and fences, J. University-Engi. Sci., 35 (2023) 69–81. https://doi.org/10.1016/j.jksues.2021.02.014
  61. Chehouri, R. Younes, A. Ilinca, J. Perron, Review of performance optimization techniques applied to wind turbines, Appl. Energy, 142 (2015) 361–388. https://doi.org/10.1016/j.apenergy.2014.12.043
  62. Barnes , E. Morozov, Structural optimisation of composite wind turbine blade structures with variations of internal geometry configuration, Compos .Struct., 152 (2016)158–167. https://doi.org/10.1016/j.compstruct.2016.05.013
  63. Yang, Geometry design optimization of a wind turbine blade considering effects on aerodynamic performance by linearization, Energies, 13 (2020) 2320. https://doi.org/10.3390/en13092320
  64. Kim et al., Compression and energy absorption characteristics of short fiber‐reinforced 2D composite lattices made by material extrusion, Eng.Repo., 5 (2023) 12701. https://doi.org/10.1002/eng2.12701
  65. Li, Study of site suitability assessment of regional wind resources development based on multi-criteria decision, Clean .Techn. Environ. Policy., 20 (2018) 1147–1166. https://doi.org/10.1007/s10098-018-1538-y
  66. Galvez, K. Olivar, F. Tolentino, L. Danao, B. Abuan, Finite Element Analysis of Different Infill Patterns for 3D Printed Tidal Turbine Blade, Sustain., 15 (2022) 713. https://doi.org/10.3390/su15010713
  67. Cabreira , R. Santana, Effect of infill pattern in Fused Filament Fabrication (FFF) 3D Printing on materials performance, Matér ., 25 (2020). https://doi.org/10.1590/s1517-707620200003.1126
  68. Mishra, P. Senthil, S. Adarsh, M. Anoop, An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts, Comp.Comm., 24 (2021) 100605. https://doi.org/10.1016/j.coco.2020.100605
  69. Tanveer, G. Mishra, S. Mishra, R. Sharma, Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts-a current review, Mater .Today .Proc., 62 (2022) 100–108. https://doi.org/10.1016/j.matpr.2022.02.310
  70. Ç. bolat , B. ergene, an experimental effort on impact Properties of Polylactic Acid Samples Manufactured by Additive Manufacturing, Duzce University J. Sci. Technol., 11(2023) 998–1013. https://doi.org/10.29130/dubited.1075259
  71. Sharif, H. Khan, N. Bashir, W. Alam, Parametric optimization and evaluating mechanical properties of poly lactic acid proceed by FDM additive manufacturing, J. Mater. Manuf., 2 (2023) 11-20. https://doi.org/10.5281/zenodo.8020527