Document Type : Research Paper

Authors

1 Materials Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Membrane Technology Research Unit, Chemical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

3 Faculty of Petroleum & Renewable Energy Engineering Dept., University Technology-Malaysia, 81310, Skudai, Johor, Malaysia.

4 Industrial and Process Chemistry Higher Institute of Applied Science and Technology Dept., Tunisia University of Gabes, Omar Ibn. ElKhattab St. 6029 Gabes, Tunisia.

Abstract

The problem of membrane fouling remains a significant concern in ultrafiltration, a commonly employed method in water treatment due to its high efficacy and minimal energy consumption. This study made a nanocomposite ultrafiltration membrane out of MXene Ti3C2 nanosheets, a new two-dimensional material, to improve the antifouling properties of PVDF membranes. It was possible to incorporate the nanosheets into the membrane structure through in situ embedment during the phase inversion process. To learn more about them, the study investigated the membranes using FESEM, FTIR, water contact angle (CA), and porosity measurements. The application of common flux and rejection tests assessed the manufactured membranes' performance. Adding MXene Ti3C2 to membranes made them less hydrophobic than the original membrane that wasn't mixed with anything else. The porosity and pore size of the membrane exhibit an increase in the MXene ratio. The mixed matrix membrane containing 0.5 wt% of Ti3C2 (M3) exhibited the lowest contact angle (CA). The modification of membrane characteristics has a positive impact on their overall performance. The membrane exhibiting the greatest porosity, specifically 0.5 wt% of Ti3C2, N5, demonstrated the highest flux rates for pure water and protein solution, measuring 538 L/m2.h and 467.8 L/m2.h, respectively. The membrane with the highest hydrophilicity, which was labeled as M3, had much better protein rejection and flux recovery rates than the pure membrane. Specifically, the recorded values for M3 were 96.6, whereas the corresponding values for the pristine membrane were 59.6. MXene Ti3C2 has some interesting properties, such as better water permeability, protein rejection, and excellent antifouling abilities, which makes it a possible material for changing antifouling membranes.

Graphical Abstract

Highlights

  • MXene was initially synthesized from a MAX Phase Ti3AlC2 substrate through delamination
  • The physical properties of the fabricated UF mixed matrix membranes with MXene were highly developed
  • MXene's inclusion in PVDF solution creates a UF membrane with new self-cleaning capabilities
  • MXene Ti3C2 enhances membranes antifouling and water permeability 

Keywords

Main Subjects

  1. Lu, S. R. Castrillón, D. L. Shaffer, J. Ma, M. Elimelech, In Situ Surface Chemical Modification of Thin-Film Composite Forward Osmosis Membranes for Enhanced Organic Fouling Resistance, Environ. Sci. Technol. https://doi.org/10.1021/es403179m
  2. Al-Najar, C. D. Peters, H. Albuflasa, N. P. Hankins , Pressure and osmotically driven membrane processes: A review of the benefits and production of nano-enhanced membranes for desalination, Desalination, 479 (2020) 114323. https://doi.org/10.1016/j.desal.2020.114323
  3. Bodzek, K. Konieczny, A. Kwiecińska, Application of membrane processes in drinking water treatment–state of art, Desalin. Water Treat., 35 (2011) 164–184. https://doi.org/10.5004/dwt.2011.2435
  4. Modi, J. Bellare, Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water, Sep. Purif. Technol., 249 (2020) 117160. https://doi.org/10.1016/j.seppur.2020.117160
  5. Karimnezhad, A. H. Navarchian, T Tavakoli Gheinani., S. Zinadini, Incorporation of iron oxyhydroxide nanoparticles in polyacrylonitrile nanofiltration membrane for improving water permeability and antifouling property, React. Funct. Polym., 135 (2019) 77–93. https://doi.org/10.1016/j.reactfunctpolym.2018.12.016
  6. T. Tsehaye, J. Wang, J. Zhu, S. Velizarov, B. Van der Bruggen, Development and characterization of polyethersulfone-based nanofiltration membrane with stability to hydrogen peroxide, J. Membr. Sci., 550 (2018) 462–469. https://doi.org/10.1016/j.memsci.2018.01.022
  7. Wei, Z. He, L. Lin, Q. Cheng, K. Huang, S. Ma, L. Chen, Negatively charged polyimide nanofiltration membranes with high selectivity and performance stability by optimization of synergistic imidization, J. Membr. Sci., 563 (2018) 752–761. https://doi.org/10.1016/j.memsci.2018.06.046
  8. -S. Shen, H. Chen, R.-H. Wang, W. Ji, Y. Zhang, R. Bai, Preparation of antifouling cellulose acetate membranes with good hydrophilic and oleophobic surface properties, Mater. Lett., 252 (2019) 1–4. https://doi.org/10.1016/j.matlet.2019.03.089
  9. Safarpour, A. Khataee, V. Vatanpour, Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced grapheme oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties, Ind. Eng. Chem. Res.,53 (2014) 13370–13382. https://doi.org/10.1021/ie502407g
  10. W. Abood, K. M. Shabeeb, A. B. Alzubaydi, H. S. Majdi, R. A. Al-Juboori, Q. F. Alsalhy, Effect of MAX Phase Ti3ALC2 on the Ultrafiltration Membrane Properties and Performance, Membranes, 13 (2023). https://doi.org/10.3390/membranes13050456
  11. F. Alsalhy, J. M. Ali, A. A. Abbas, A. Rashed, B. V. Bruggen, S. Balta, Enhancement of poly (phenyl sulfone) membranes with ZnO nanoparticles, Desalin. Water Treat., 51 (2013).
  12. F. Alsalhy, F. H. Al-Ani, A. E. Al-Najar, S. I. Jabuk, A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor, Chem. Eng. Process. Process Intensif., 130 (2018) 262-274. https://doi.org/10.1016/j.cep.2018.06.019
  13. F. Alsalhy, J. M. Ali, A. A. Abbas, A. Rashed, B. V. Bruggen, B. Stefan, Enhancement of poly (phenyl sulfone) membranes with ZnO nanoparticles, Desalination and Water Treatment (2013) 1-12.
  14. J. Jamed, A. A. Alanezi, Q. F. Alsalhy, Effects of embedding functionalized multi-walled carbon nanotubes and alumina on the direct contact poly(vinylidene fluoride-cohexafluoropropylene) membrane distillation performance, Chem. Eng. Commun., 206 (2019) 1035-1057. https://doi.org/10.1080/00986445.2018.1542302
  15. M. Aljumaily, M. A. Alsaadi, N. A. Hashim, Q. F. Alsalhy, R. Das, F. S. Mjalli, Embedded high-hydrophobic CNMs prepared by CVD technique with PVDF-co-HFP membrane for application in water desalination by DCMD, Desalin. Water Treat., 142 (2019) 37–48.
  16. J. Sadiq, K. M. Shabeeb, B. I. Khalil, Q. F. Alsalhy, Effect of embedding MWCNT-g-GO with PVC on the performance of PVC membranes for oily wastewater treatment, Chem. Eng. Commun., 207 (2020) 733–750. https://doi.org/10.1080/00986445.2019.1618845
  17. J. Sadiq, E. S. Awad, K. M. Shabeeb, B. I. Khalil, S. M. Al-Jubouri, T. M. Sabirova, N. A. Tretyakova, H. S. Majdi, Q. F. Alsalhy, A. J. Braihi, Comparative study of embedded functionalized MWCNTs and GO in Ultrafiltration (UF) PVC membrane: interaction mechanisms and performance, Int. J. Environ. Anal. Chem., 103 (2020) 415-36. https://doi.org/10.1080/03067319.2020.1858073
  18. G. Fane, R. Wang, M. X. Hu, Synthetic membranes for water purification: status and future, Angew Chem. Int. Ed. Eng., 54 (2015) 3368-3386. https://doi.org/10.1002/anie.201409783
  19. Alfahel, R. S. Azzam, M. Hafiz, A. H. Hawari, R. P. Pandey, K. A. Mahmoud, M. K. Hassan, A. A. Elzatahry, Fabrication of fouling resistant Ti3C2Tx (MXene)/cellulose acetate nanocomposite membrane for forward osmosis application, J. Water Process Eng., 38( 2020) 101551. https://doi.org/10.1016/j.jwpe.2020.101551
  20. Rasool, R. P. Pandey, P. A. Rasheed, S. Buczek, Y. Gogotsi, K. A. Mahmoud, Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes), Mater. Today, 30 (2019) 80–102. https://doi.org/10.1016/j.mattod.2019.05.017
  21. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Adv. Mater., 23 (2011) 4248–4253. https://doi.org/10.1002/adma.201102306
  22. Rasool, K. Mahmoud, D. Johnson, M. Helal, G. Berdiyorov, Y. Gogotsi, Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets, Sci. Rep., 7 (2017) 1598. https://doi.org/10.1038/s41598-017-01714-3
  23. Ling, C. E. Ren, M.-Q. Zhao, J. Yang, J. M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, Proc. Natl. Acad. Sci., 111 (2014) 16676-1661. https://doi.org/10.1073/pnas.1414215111
  24. Li, X. Li, B. Bruggen, An MXene based membrane for molecular separation, Environ. Sci. Nano., (2020) 1289–1304. https://doi.org/10.1039/C9EN01478K
  25. S. Azam, Enhancing The Fouling Resistance and Rejection of Cellulose Acetate [Ca]/Mxene [Ti3C2Tx] Nanocomposite Membranes, Qatar University, Doha, Qatar, 2021.
  26. Zhu, J. Hou, Y. Zhang, M. Tian, T. He, J. Liu, V. Chen, Polymeric antimicrobial membranes enabled by nanomaterials for water treatment, J. Membr. Sci., 550 (2018) 173–197. https://doi.org/10.1016/j.memsci.2017.12.071
  27. H. b. Alosaimi, H. M. A. Hassan, I. H. Alsohaimi, Q. Chen, S. Melhi, A.A. Younes, W.H. El-Shwiniy, Fabrication of sulfonated polyethersulfone ultrafiltration membranes with an excellent antifouling performance by impregnating with polysulfopropyl acrylate coated ZnO nanoparticles, Environ. Technol. Innov., 25 (2022) 102210. https://doi.org/10.1016/j.eti.2021.102210
  28. Beisl, S. Monteiro, R. Santos, A. S. Figueiredo, M. G. Sánchez-Loredo, M. A. Lemos, F. Lemos, Minhalma M. , M. N. de Pinho, Synthesis and bactericide activity of nanofiltration composite membranes–Cellulose acetate/silver nanoparticles and cellulose acetate/silver ion exchanged zeolites, Water Res., 149 (2019) 225–231. https://doi.org/10.1016/j.watres.2018.10.096
  29. Wang, Y. Wu, J. Zhang, G., Li, H. Huang, X. Zhang, Q. and Jiang, Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination, Mater. Lett., 160 (2015) 537-540. https://doi.org/10.1016/j.matlet.2015.08.046
  30. G. García, J. Marchese, N. A. Ochoa, Effect of the particle size and particle agglomeration on composite membrane performance, J. Appl. Polym. Sci., 118 (2010) 2417–2424. https://doi.org/10.1002/app.32274
  31. M. Duval, A. J. B. Kemperman, B. Folkers, M. H. V. Mulder, Desgrandchamps G., Smolders C.A., Preparation of zeolite filled glassy polymer membranes, J. Appl. Polym. Sci., 54 (1994) 409–418. https://doi.org/10.1002/app.1994.070540401
  32. Casado-Coterillo, Mixed Matrix Membranes, Membranes, 9 (2019)149. https://doi.org/10.3390/membranes9110149
  33. E. Karahan, K. Goh, C. Zhang, E. Yang, C. Yıldırım, C. Y. Chuah, M. G. Ahunbay, J. Lee, Ş. B. Tantekin-Ersolmaz, Y. Chen, MXene materials for designing advanced separation membranes, Adv. Mater., 32 (2020) 1906697. https://doi.org/10.1002/adma.201906697
  34. Nasrollahi, L. Ghalamchi, V. Vatanpour, and A. Khataee, Photocatalytic-membrane technology: a critical review for membrane fouling mitigation, J. Ind. Eng. Chem., 93 (2021) 101–116. https://doi.org/10.1016/j.jiec.2020.09.031
  35. Khan, T. A. Sherazi, Y. Khan, S. Li, S. Ali Raza Naqvi, Z. Cui, Fabrication and characterization of polysulfone/modified nanocarbon black composite antifouling ultrafiltration membranes, J. Membr. Sci., 554 (2018) 71–82. https://doi.org/10.1016/j.memsci.2018.02.063
  36. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature, 516 (2014) 78-81. https://doi.org/10.1038/nature13970
  37. P. Pandey, P. A. Rasheed, T. Gomez, R. S. Azam, K. A. Mahmoud, A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate, J. Membr. Sci., 607 (2020) 118139. https://doi.org/10.1016/j.memsci.2020.118139
  38. Xue, K. Zhang, MXene nanocomposite nanofiltration membrane for low carbon and long-lasting desalination, J. Membr. Sci., 640 (2021) 119808. https://doi.org/10.1016/j.memsci.2021.119808
  39. Xu, X. Zhu, X. Luo, Y. Guo, Y. Liu, L. Yang, X. Tang, G. Li, H. Liang, MXene Nanosheet Templated Nanofiltration Membranes toward Ultrahigh Water Transport, Environ. Sci. Technol., 55 (2021) 1270–1278. https://doi.org/10.1021/acs.est.0c06835
  40. Zhao, Y. Che, Y. Mo, W.Huang , C. Wang, Fabrication of PEI modified GO/MXene composite membrane and its application in removing metal cations from water, J. Membr. Sci., 640 (2021) 119847. https://doi.org/10.1016/j.memsci.2021.119847
  41. R. Pereira, A. M. Isloor, U. K. Bhat, A. F. Ismail, A. Obaid, and H. K. Fun, Preparation and performance studies of polysulfone-sulfated nano-titania (S-TiO2) nanofiltration membranes for dye removal, RSC Adv., 5 (2015). https://doi.org/10.1039/c5ra07994b
  42. Khan, T. A. Sherazi, Y. Khan, S. Li, S. Ali Raza Naqvi, Z. Cui, Fabrication and characterization of polysulfone/modified nanocarbon black composite antifouling ultrafiltration membranes, J. Membr. Sci., 554 (2018) 71–82. https://doi.org/10.1016/j.memsci.2018.02.063
  43. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang, D. Zhu, A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water, Angew. Chem., 116 (2004) 2046–2048. https://doi.org/10.1002/ange.200353381
  44. Sun, M. Q. Liu, J. H. Guo, J. Y. Zhang, B. B. Li, D. Y. Li, Preparation and characterization of PDMS-PVDF hydrophobic microporous membrane for membrane distillation, Desalination, 370 (2015) 63–71. https://doi.org/10.1016/j.desal.2015.05.017
  45. Haberkamp, M. Ernst, G. Makdissy, P. M. Huck, M. Jekel, Protein fouling of ultrafiltration membranes - Investigation of several factors relevant for tertiary wastewater treatment, J. Environ. Eng. Sci., 7 (2008) 651–660. https://doi.org/10.1139/S08-038
  46. Gul, Z. A. Rehan, S. A. Khan, K. Akhtar, M. A. Khan , M. I. Khan , M. I.  Rashid  , A. M. Asiri  , S. B. Khan, Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol, J. Mol. Liq., 230 (2017) 616–624.