Document Type : Research Paper

Authors

1 Mechanical Engineering Dept., University of Muhammadiyah Malang, Malang, Indonesia.

2 Mechanical Engineering Dept., University of Brawijaya, Indonesia.

Abstract

Indonesia faces a significant challenge in managing its waste effectively. Conventional incineration, while reducing waste volume, raises environmental concerns due to emissions. This research explores a novel approach by developing a thermoelectric incinerator prototype with a 10 kg/hour capacity. The incinerator aims to convert heat generated during waste incineration into electrical energy, offering an environmentally friendly alternative for waste management. The research involved designing and modeling the incinerator using Ansys Fluent 2021 R1 software. Incineration tests were conducted experimentally using 5 kg organic and 5 kg inorganic waste for 30 minutes. Critical parameters such as temperature distribution, moisture content, calorific value, combustion temperature, generated voltage, and ash production were analyzed. The analysis revealed good temperature distribution through Computational Fluid Dynamics (CFD) simulations, enabling the optimization of air and heat flow within the incinerator. Organic waste with a water content of 13.93% and a calorific value of 5327.76 cal/gram reached a combustion temperature of 181°C. In comparison, inorganic waste (water content: 2.39%, calorific value: 10846.58 cal/gram) achieved a temperature of 210℃. The maximum voltage generated was 2.1 V for organic waste and 2.2 V for inorganic waste. Notably, the incineration process was reduced by 72% for organic waste and 68% for inorganic waste, highlighting its effectiveness in volume reduction. This thermoelectric incinerator prototype offers several advantages: a high level of waste reduction, a modular design facilitating easy assembly and disassembly, and the ability to handle various types of waste as fuel.

Graphical Abstract

Highlights

  • This study suggests a thermoelectric incinerator that tackles Indonesia's waste issue sustainably.
  • CFD analysis enhances heat flow, improving the incinerator's combustion performance.
  • High reduction, modular design, and flexible fueling make the suggested incinerator innovative.

Keywords

Main Subjects

  1. Waluyo, D. B. Kharisma, Circular economy and food waste problems in Indonesia: Lessons from the policies of leading Countries, Cogent Soc. Sci., 9 (2023) 2202938. https://doi.org/10.1080/23311886.2023.2202938
  2. .E. Satispi, A. A. Samudra, Plastic Waste Management in Indonesia, J. Public Policy Admin., 6 (2022) 155–164. http://dx.doi.org/10.11648/j.jppa.20220604.11
  3. Abbas, H. Hadi, A Comparison of Results among Waste Management Producers: A Case Study for the Process of Waste Management, Eng. Technol. J., 41 (2023) 586–591. https://doi.org/10.30684/etj.2023.138376.1388
  4. Yan and M. G. Kanatzidis, High-performance thermoelectrics and challenges for practical devices, Nat. Mater.,. 21 (2022) 503–513. https://doi.org/10.1038/s41563-021-01109-w
  5. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, and M. Ismail, A comprehensive review of Thermoelectric Generators: Technologies and common applications, Energy Rep., 6 (2020) 264–287. https://doi.org/10.1016/j.egyr.2019.12.011
  6. O. Freire, L. M. Navarrete, B. P. Corrales, and J. N. Castillo, Efficiency in thermoelectric generators based on Peltier cells, Energy Rep., 7 (2021) 355–361. https://doi.org/10.1016/j.egyr.2021.08.099
  7. Renge, Y. Barhaiya, and S. Pant, A Review on Generation of Electricity using Peltier Module, Int. J. Eng. Res., 6 (2017) 453-457. https://doi.org/10.17577/IJERTV6IS010308
  8. S. Khan, I. Mubeen, Y. Caimeng, G. Zhu, A. Khalid, and M. Yan, Waste to energy incineration technology: Recent development under climate change scenarios, Waste Manage. Res., 40 (2022) 1708–1729. https://doi.org/10.1177/0734242X221105411
  9. Kalra, N., Community Participation and Waste Management, Sustainable Waste Management: Policies and Case Studies, 1,2019. http://dx.doi.org/10.1007/978-981-13-7071-7
  10. Fernández-Yáñez, V. Romero, O. Armas, and G. Cerretti, Thermal management of thermoelectric generators for waste energy recovery, Appl. Therm. Eng., 196 (2021) 1–22. https://doi.org/10.1016/J.APPLTHERMALENG.2021.117291
  11. Widipratama, I. W. A. Wijaya, I. G. N. Janardana, Rancang Bangun Incinerator Pembakaran Sabut Dan Tempurung Kelapa Di UD. Nadi Utama Sebagai Pembangkit Listrik Menggunakan Peltier TEG SP1848 27145SA, Innovative: J. Social Sci. Res., 3 (2023) 11089–11101.
  12. Muhammad, E. Kurniawan, and P. Pangaribuan, Incinerator Analysis for Power Plants, in e-Proceeding of Engineering, 2018.
  13. Ardiatma, P. A. Sari, and A. Sumarna, Pemanfaatan Energi Panas Hasil Pembakaran Sampah Tanpa Asap Sebagai Pembangkit Listrik Alternatif Berskala Kecil Menggunakan Termoelektrik, Jurnal Pelita Teknologi, 16 (2021) 1–7. https://doi.org/10.37366/pelitatekno.v16i1.310
  14. Nurjanah, A. M. M. Huda, R. H. Saputra, A. Sahara, and H. Hasanudin, Rancang Bangun Pembangkit Listrik Tenaga Sampah (PLTSa) di Lingkungan STT Migas Balikpapan, PETROGAS: J. Energy Technol., 3 (2021) 1–13. https://doi.org/10.58267/petrogas.v3i2.65
  15. Nour Eddine, D. Chalet, X. Faure, L. Aixala, and P. Chessé, Optimization and characterization of a thermoelectric generator prototype for marine engine application, Energy, 143 (2018) 682–695. https://doi.org/10.1016/J.ENERGY.2017.11.018
  16. Liang, T. Fu, C. Hu, X. Chen, S. Su, and J. Chen, Optimum matching of photovoltaic–thermophotovoltaic cells efficiently utilizing full-spectrum solar energy, Renew. Energy, 173 (2021) 942–952. https://doi.org/10.1016/j.renene.2021.04.031
  17. Y. Kim, J. Kwak, and B. Kim, Energy harvesting performance of hexagonal shaped thermoelectric generator for passenger vehicle applications: An experimental approach, Energy Convers. Manag., 160 (2018) 14–21. https://doi.org/10.1016/j.enconman.2018.01.032
  18. D. Deng, X. Liu, S. Chen, and N. Q. Tong, Thermal Optimization of the Heat Exchanger in an Automotive Exhaust-Based Thermoelectric Generator, J. Electron. Mater., 42 (2013) 1634–1640. https://doi.org/10.1007/s11664-012-2359-0
  19. Р. Yarmolchick, R. Schröger, H. Haberfelner, M. Pichler, D. Kostić, and G. V. Moroz, Combined Combustion of Various Industrial Waste Flows in Boiler Furnaces, in ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations, Belarusian National Technical University, Dec. 2020, 526–540. https://doi.org/10.21122/1029-7448-2020-63-3-236-252
  20. Martinez-Sanchis, A. Sternin, T. Santese, and O. J. Haidn, The role of turbulence in the characteristic velocity and length of rocket combustors, Aerosp. Sci. Technol., 134 (2023) 108158. https://doi.org/10.1016/j.ast.2023.108158
  21. Y. Vershinina, V. V Dorokhov, D. S. Romanov, and P. A. Strizhak, Combustion stages of waste-derived blends burned as pellets, layers, and droplets of slurry, Energy, 251 (2022) 123897. https://doi.org/10.1016/j.energy.2022.123897
  22. Dianda, M. A. Taleb, and E. Munawar, Production and characterization refuse derived fuel (RDF) from high organic and moisture contents of municipal solid waste (MSW), IOP Conf Ser Mater Sci Eng, 334, 012035, Mar. 2018. https://doi.org/10.1016/j.ast.2023.108158
  23. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog., 6 (2018) 268–289. https://doi.org/10.1016/j.tsep.2018.04.017