In this work, a three-dimensional primitive variable of supersonic flow over
missiles was computed based on finite difference computational fluid dynamic
methods. The problem was considered is to deal with external, inviscid, compressible
supersonic- flow over three-dimensional missiles with and without canard. Euler
equations were solved using time-marching MacCormack’s explicit technique. The
flow conditions are taken at sea level and Mach number was tested up to 4.0. To deal
with complex shape of missiles the so-called “body fitted coordinate system” was
considered and the algebraic and elliptic methods were used to generate grids over
missiles. The number of iterations and the number of mesh points depending on
Mach number. The result indicate, that for the same Mach number, the increasing of
mesh points, lead to increase of the number of iterations