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 ABSTRACT 
      Modern power systems are complex and non-linear and their operating can vary 
over a wide range. This paper presents a linear mathematical model of the 
synchronous generator to control the excitation system based on Neural Network to 
simulate an Automatic Voltage Regulator. The voltage regulator is used to modify 
terminal voltage for the purpose of tracking a reference voltage and comparative with 
PID controller. ANN (NARMA-L2) system is proposed as an effective controller 
model to achieve the desired enhancement. This model after training can be called as 
(Identifier).The proposed technique is evaluated on a single machine infinite bus 
under different operating conditions (no-load and full load condition) by using 
MATLAB simulink software. 

Keywords: Synchronous generator, neural network based control, automatic voltage 
regulator (AVR), PID controller. 

تخدام الشبكات العصبیةأسب على تحفیزالمولد التزامنيالسیطرة  
یةذكال ةالأصطناعی  

الخلاصة
 مج ال  ض من  یتغی ر  أن یمك ن  عملھ ا  ش روط  وان التعقی د  وعالیة لاخطیة الحدیثة القدرة أنظمة تعتبر

الش بكات معتم دا لمولد متزامن للسیطرة على نظ ام الاث ارة   خطیا یقدم نموذجا ریاضیا   البحث ھذا.واسع
  .لمحاكاة منظم الفولطیة الاليالعصبیة 

لغ  رض تتب  ع فولطی  ة المرج  ع ومقارنتھ  ا م  عالاقط  اب ان م  نظم الفولطی  ة یس  تعمل لتع  دیل فولطی  ة   
لقد تم اقتراح الشبكات العصبیة الاصطناعیة من ن وع.)ضلي التفا – التكاملي – التناسبي( PIDالمسیطر

)NARMA-L2 ( بش كل دقی ق لك ي یك ون اخ راج ھ ذامسیطر و الذي یمكن ان یدرب فعال و كنموذج
 ان التقنی  ة المقترح  ة طبق  ت عل  ى مول  دة احادی  ة     ).المط  ابق(ھ  و الاخ  راج الحقیق  ي للمنظوم  ة  المس  یطر 

 )حال  ة الحم  ل واللاحم  ل (وتح  ت ظ  روف تش  غیل مختلف  ة  (infinite bus)مرتبط  ة بخ  ط نق  ل لا نھ  ائي 
  ).MATLAB(باستخدام برنامج 
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INTRODUCTION    
OWER-SYSTEM control essentially requires a continuous balance between 
electrical power generation and a varying load demand, while maintaining 
system frequency, voltage levels, and power grid security. However, generator 

and grid disturbances can vary between minor and large imbalances in mechanical 
and electrical generated power, while the characteristics of a power system change 
significantly between heavy and light loading conditions, with varying numbers of 
generator units and transmission lines in operation at different times. The result is a 
highly complex and nonlinear dynamic electric power grid with many operational 
levels made up of a wide range of energy sources with many interaction points. [1] 
** In most modern systems the automatic voltage regulator (AVR) is a controller that 
senses the generator output voltage (and sometimes the current) then initiates 
corrective action by changing the exciter control in the desired direction. The speed of 
the AVR is of great interest in studying stability. Because of the high inductance in 
the generator field winding, it is difficult to make rapid changes in field current. This 
introduces a considerable lag in the control function and is one of the major obstacles 
to be overcome in designing a regulating system. [2] 
ANNs are good at identifying a nonlinear system and then controlling it, and they are 
suitable for multi-variable applications, where they can identify the interactions 
between the inputs and outputs. This removes the need for an accurate model of the 
power system. It has been shown that a multi-layer feedforward neural network using 
deviation signals as its inputs can identify the complex and nonlinear dynamics of a 
single-machine infinite-bus system (SMIB) system with sufficient accuracy to be 
used to design a generic controller, which yields optimal dynamic system response 
irrespective of the generator load and system configurations.[3,4]  
SIMULINK as a software tool has been designed for solving nonlinear differential 
equation in either state space or block diagram form .It can be called from MATLAB 
using, often, a single command. 
The results of the SIMULINK program can be automatically passed back to 
MATLAB for further analysis .Simulations in SIMULINK run three to ten times 
faster than similar program in MATLAB because SIMULINK program are compiled. 
Due to these advantages offered by MATLAB/SIMULINK, this environment was 
chosen for these studies. 

MATHEMATICAL MODELING AND SIMULATION OF 
SYNCHRONOUS MACHINE 

For modeling purpose, the theoretical analysis of single machine infinite-bus system 
is considered to simulate the terminal voltage of excitation system. 
A single machine infinite bus power system is shown in fig.1.This system consists of 
a generator connected to the infinite bus through a transmission line. An infinite bus 
has a fixed voltage and frequency.  
The mathematical description of the synchronous machine is the same as all types of 
AC machines, which have two main problems: first, is the complex 3-phase 
represented differential equations, and second, is the time varying mutual inductance 
between stator and rotor winding, through the dynamic response of the SG. Simply, 
the first problem can be solved by using axis transformation to transfer the 3-phase 
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parameters and quantities (like: voltage, current, flux….) to 2-phase parameters, 
which called Park's transformation or, Park model of SG. In which all stator 
quantities are transferred from phase a, b and c into equivalent dq axis new variables. 
Equations (1 to 4) show the approximate Park's transformation by neglecting the zero 
sequence parameters: [6, 7] 
  ( ) =    cos ( ) cos ( −    ) cos ( +    )sin ( ) sin ( −    ) sin ( +    )  . (1) 

so ,         =  | ( )|.          ……        ……… (2) 

         =  | ( )|.            ……       ……… (3) 

         =  | ( )|.          …           …….. (4) 

 
 

The time varying problem can be solved by using the synchronously rotating 
reference frame model, in which all stator variables associated with fictitious winding 
rotating with the rotor at synchronous speed [7]. The transformation equations are: 
  (  ) =  cos (  ) −   (  )   (  )    (  )    … (5) 

         =  | (  )|.                         ….  (6) 

 
Figure (2) shows the synchronous generator stator and rotor windings in the 

dq-axis model, it's obviously that the effect of the field winding appears only in the d-
axis, whereas the effect of the damper winding is equivalent to the rotor cage winding 
of an induction motor, which appears in both dq-axis circuits. 
Therefore, the synchronously rotating reference frame equivalent circuits of the SG in 
de-qe axes can be shown in fig (3). Equations (7 to 18) show stator and rotor circuits 
equations in de-qe axes: ∎                : [5, 6]     =  −     −     −               . . (7)     = −     +      −              . . (8) ∎               : [6, 7] 
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                                                0 =       −              … (9) 

                                           0 =      −                 … (10) 

                                                =     +                … (11) 
    
Where all rotor parameters are referred to stator circuit and the mutual and self 
inductance of air gap (main) flux linkage are identical to Lqm and Ldm rotor to stator 
reduction.  
    =       +        +                   . . (12)    =       +        +    +        . . (13)   =      +        +    +            . . (14)    =       +        +                   . . (15)    =       +        +    +        . . (16) 
 ∎ ℎ                        : [6, 7]   = −32         −              . . (17) ∎ ℎ                 : [6, 7] 
                                                          −   =                    . . . (18) 
 
The overall system simulation is shown in figure(4),and the inside 
subsystem1,subsystem2 are shown in figure (5)and figure(6).The output performance 
of the system under no-load and full load condition can shown in figure(7)and 
figure(8). 
  
PID CONTROLLER 

An adaptive proportional-integral-derivative (PID) controller is the most powerful 
method to regulate terminal voltage of the S.G used with different operating loads 
and power factors [1]. The operating principle is to sense the terminal phase voltage 
and use it as a feedback signal through the PID controller to generate command 
setting signal which adapt the excited voltage of the S.G, which gives an acceptable 
behavior of the system for different conditions.  
      PID control is one of the earliest control strategies. It has been widely used in the 
industrial control fields. Its widespread acceptability can be recognized by: 
the familiarity with which it is perceived amongst researchers and practitioners within 
the control community, simple structure and effectiveness of algorithm, relative ease 
and high speed of adjustment with minimal down-time and wide range of applications 
where its reliability and robustness produces excellent control performances. 
However, successful applications of PID controllers require the satisfactory tuning of 
three parameters - which are proportional gain (KP), integral time constant (KI), and 
derivative time constant (KD) - according to the dynamics of the process. A 
proportional controller (Kp) will have the effect of reducing the rise time and will 
reduce, but never eliminate, the steady –state error. An integral control (Ki) will have 
the effect of eliminating the steady – state error, but it may make the transient response 
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worse . A derivative control (Kd) will have the effect of increasing the stability of the 
system , reducing the overshoot , and improving the transient response .  
Traditionally, these parameters are determined by a trial and error approach. Manual 
tuning of PID controller is very tedious, time consuming and laborious to implement, 
especially where the performance of the controller mainly depends on the experiences 
of design engineers. In recent years, many tuning methods have been proposed to 
reduce the time consumption on determining the three controller parameters. The 
most well known tuning method is the Ziegler-Nichols tuning formula; it determines 
suitable parameters by observing a gain and a frequency on which the plant becomes 
oscillatory. [9] 
 
NEURAL CONTROLLER 
     The model of an artificial neuron that closely matches a biological neuron is given 
by an op-amp summer like configuration shown in figure (9).  
Where x1, x2, x3… are input signals, each of the input signal flows through a gain 
called synaptic weight. The weight can be positive (excitory) or negative (inhibitory) 
corresponding, respectively, to acceleration or inhibition [10]. 
The summing nodes accumulate all the input weighted signals and then pass to the 
output through the transfer function which is usually nonlinear. The transfer function 
can be step or threshold type, signum type, or linear threshold type. The transfer 
function can also be nonlinear continuously varying type, such as sigmoid, inverse-
tan, hyperbolic, or Gaussian type. The sigmoidal transfer function is most commonly 
used, and it is given by 
  =     −  ………… (19) 
 
    Where α is the coefficient or gain which adjusts the slope of the function. With 
high gain, this function approaches a step function. The sigmoidal function is 
nonlinear, monotonic, differentiable, and has the largest incremental gain at zero 
signal, and these properties are of particular interest. 
In general, neural networks can be classified as feedforward and feedback types 
depending on the interconnection of the neurons. At present, the majority of the 
problems use feedforward architecture, and it is of direct relevance to power 
electronics and motion control applications. 
Figure (10) shows the structure of a feedforward multiplayer network with two input 
and two output signals. The topology is based on Perceptron which was proposed by 
Rosenblatt in 1958. The circles represent neurons and the dots in the connections 
represent the weights. 
 The network has three layers, defined as input layer (a), hidden layer (b), and output 
layer (c). The hidden layer functions as a connection between the input and the output 
layers. The input and output layers have neurons equal to the respective number of 
signals. The input layer neurons do not have transfer functions, but there are scale 
factors, as shown, to normalize the input signals. The number of hidden layers and the 
number of neurons in each hidden layer depend on the network design considerations. 
The input layer transmits the signals to the hidden layer, and the hidden layer, in turn, 
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transmits the signals to the output layer, as shown. The network can be fully 
connected or partially connected. 
back Propagation Training 
   Back-Propagation training algorithm is most commonly used in a feedforward 
neural networks as mentioned before. 
For this reason, a feedforward network is often defined as “back-prop” network. 
Figure (11) shows the principle of back propagation training.  
In the beginning, the network is assigned random positive and negative weights. For a 
given input signal pattern, step by step calculations are made in the forward direction 
to derive the output pattern. A cost functional given by the squared difference 
between the net output and the desired net output for the set of input patterns is 
generated and this is minimized by gradient descent method altering the weights one 
at time starting from the output layer. The equations for the output of a single 
processing unit are given as:      =  WijXi  =1                              ...(20)    =                                            … (21) 
 
Where j is the processing unit under consideration, p is the input pattern number is 
the output of the     neuron connected to the     neuron, Wijis the connection weight 
between the     and     neurons.         is the output of the summing node, i.e., the      neuron activation signal, N is the number of the neurons feeding the     neuron, f 
j is the nonlinear differentiable transfer function (usually sigmoid), and    is the 
output of the corresponding neuron. For the input pattern p, the squared output error 
for all the output layer neurons of the network is given as 
 E =   (d − y ) =   ∑     −      !                   … (22) 
 
  Where     is the desired output of the    neuron in the output layer    , is the 
corresponding actual output, S is the dimension of the output vector  y  is the actual 
net output vector, and d    is the corresponding desired output vector. 
The total squared error E for the set of P patterns is then given by 
 E =   ∑  E =   ∑    ∑ (   −     ) !         ... (23) 
 

   The weights are changed to reduce the cost functional E in a minimum value by 
gradient descent method, as mentioned. The weight update equation is then given as: 
 W  (t + 1)=W  (t) η         ( ) …                         ….. (24) 
 
Where η is the learning rate, Wi j (t +1) is the new weight and Wi j (t) is the old 
weight. The weights are updated for all the P training patterns. Sufficient learning is 
achieved when the total error E summed over the patterns falls below a prescribed 
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threshold value. The iterative process propagates the error back-propagation [10, 11, 
12]. 
NARMA –L2 
     In this work, the NARMA –L2 architecture is applied with the aid of the Neural 
Network Toolbox of MATLAB software. The identification can be summarized by 
the flowing steps : 
a- The first step in using feedback linearization (or NARMA-L2 control) is to identify 
the system to be controlled. 
Neural network is trained to represent the forward dynamics of the system. One 
standard model that has been used to represent general discrete-time nonlinear 
systems is the NARMA-L2 model [13]: 
 

y(k +d) = N[y(k),y(k – 1),…, y(k –n+ 1), 

u(k),u(k– 1),…,u(k–n+ 1)]                                                                  ……(25) 
 
 where u(k)is the system input, and y(k)is the system output and k ,d, n are integral 
number and N is the function of the output system after identification. 
b- The next step is to make the output system follows some reference trajectory 
by developing a nonlinear controller of the form: 
 

y(k +d) = yr(k +d)                                                                               …… (26) 
u(k) = G[y(k),y(k – 1),…, y(k –n+ 1), yr(k +d),u(k– 1),…,u(k–m+ 1)] ….. (27) 

 
  The problem with using this controller is: Training neural network to minimize 
mean square error, needs to use dynamic back propagation which quite slow [14] . 
 One solution is to use approximate models to represent the system. The controller 
used in this section is based on 
the NARMA-L2 approximate model: 
 

yˆ(k+d)=f[y(k),y(k–1),…,y(k–n+1),u(k–1),…,u(k–m+ 1)]+ g[y(k),y(k –1),…,y(k– 
 

n+1),u(k– 1) ,…,u(k–m+ 1)]u(k)                                                         ….. (28) 
 
Where the next controller input is not contained inside the nonlinearity. The 
advantage of this form is that controlled 
       input make the system output follows the reference equation(16) . The resulting 
controller is:   ( ) =   (   )  [ ( ), (   ),. (     ).. (     )] [ ( ),.. (     ), (     )]                          …... (29) 
 
Using this equation directly can cause realization problems, because must determine 
the control input based on the output at the same time, i.e: 
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y(k+d)=f[y(k),y(k–1),..,y(k n+1),u(k),u(k– 1),…,u(k–n+ 1)]+ g[y(k),…,y(k–
n+1),u(k),…,u(k–n+ 1)]u(k+1)                                                          …… (30) 

 
Figure (8) is referred to block diagram of the proposed AVR system synchronous 
generator with NARMA-L2 controller. 
 
SIMULATION RESULT 
      The model is inserted in the Simulink diagram and run firstly for the case with 
PID controller to calculate values of overshooting and settling time from the output 
response. Parameters used in the simulation studies are given below: Machine 
Parameters: 
 3-phase,                                                        
380V,5KVA,50HZ,Ls=13.6mH,Lf=33.4mH,Rs=1.2Ω,Rf=50Ω, 
Excitation voltage=110V, 
Rotor inertia=0.1Kg/  . 
   
   The simulation model for the AVR of the synchronous generator for load change 
with PID controller is shown in the figure (12). It is very interesting to investigate the 
effects of PID controller’s parameters Kp, Ki, and Kd on the terminal voltage 
response that exist in the excitation system. Tuning the PID controller by setting the 
proportional gain Kp to 10, Ki to 8, and Kd to 0.001.  
    The response for terminal voltage and current are shown in figure (13)and 
figure(14),we note that the overshoot of the terminal voltage is (0.14) ,the rise time is 
(0.8sec) and the settling time is(4.3sec). 
    The field voltage and current can be shown as in Fig(15)and Fig(16). Figure (17) 
illustrates simulation system of SG with ANN. The controlling steps and output 
response is discussed in the following.  The graphs shown in figure (18) and figure 
(19) show the performance results of the ANN and the response for the terminal 
voltage and current, we note that the overshoot is approximately zero ,the rise time  
and the settling time is (0.8sec),we can see the field voltage and current as in 
Fig(20)and fig(21). Fig(22) show the comparative of the terminal voltage (Vt) step 
response  between PID &ANN. 
 
CONCLUSIONS 
       A proportional-integral-derivative (PID) and ANN controller for a synchronous 
generator is presented in this paper. Simulation studies for a single-machine power 
system environment are presented to demonstrate the effectiveness of using the PID 
controller, we compared PID controller result that with ANN to show the 
performance of this controller. The ANN is more effective than the PID. The 
improved damping performance by the neurocontrollers allows the generator to be 
operated closer to its stability limit during steady state, and still remain stable after 
severe disturbances. 
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Figure (1) a close loop control of S.G. and its excitation system. 
 
 
 
 
              
 
 
 
                                       
 
 
 
 
 
 
 

Figure (2) S.G. windings in qd-axis 
 
 
 
 
 
 
                                         
 
 
                          Figure (5) Subsystem 1 
 
 
 
 
                               
                       

 
Figure (3) Stator and rotor equivalent   circuits in qd-axis 
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Figure (4) Block diagram of a synchronous machine 
with AVR simulated with 

Figure (5) Subsystem 1 
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Figure (6) Subsystem 2 
 
      
 
 
     
 
    
 
 
                     
                                                                         
                                                               
 
 
 
 
 
 
 
 
 

Figure (7) Terminal voltage (Vt ) step response  simulated with matlab 
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Figure (8) current waveform step response simulated with matlab 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure (9) Structure of an artificial neuron 
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Figure (10) Structure of a feedforward  multiplayer  network 
 

 
 

Figure (11) Principle of Back-Propagation training 
 

 

X1 

Y2 

Y
1 

X2 

Input 
layer 

Hidden 
layer 

output 
layer 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Eng. & Tech. Journal, Vol. 30, No.3,2012                  Excitation Control of Synchronous Generator 
Via Neural Network Based   Controllers 

                                       
 

392 
 

 
 

Figure (12) Block diagram of a synchronous machine with PID. 

 
       

 
Figure (13) Terminal voltage (Vt ) step response  with PID 
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Figure (14) current waveform step response with PID

Figure (15) Field voltage with PID 
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Figure (16) Field current with PID 

 
 

Figure (17) Block diagram of a synchronous machine with 
 AVR simulated with ANN controller. 
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Figure (18) Terminal voltage (Vt ) step response  with ANN 

Figure (19) current waveform step response  with ANN 
 
 
 
 
 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Eng. & Tech. Journal, Vol. 30, No.3,2012                  Excitation Control of Synchronous Generator 
Via Neural Network Based   Controllers 

                                       
 

396 
 

 
Figure (20)Field voltage with ANN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (21) Field current with ANN 
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Figure (22) Comparative between the performances of  
the terminal voltage by using PID &ANN 
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