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ABSTRACT

Modern power systems are complex and non-linear and their operating can vary
over a wide range. This paper presents a linear mathematicall modd of the
synchronous generator to control the excitation system based on Neural Network to
simulate an Automatic Voltage Regulator. The voltage regulator is used to modify
terminal voltage for the purpose of tracking a reference voltage and comparative with
PID controller. ANN (NARMA-L2) system is proposed as an effective controller
mode to achieve the desired enhancement. This mode after training can be called as
(Identifier).The proposed technique is evaluated on a single machine infinite bus
under different operating conditions (no-load and full load condition) by using
MATLAB simulink software.

Keywords: Synchronous generator, neural network based control, automatic voltage
regulator (AVR), PID controller.
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INTRODUCTION

OWER-SYSTEM control essentially requires a continuous balance between

eectrical power generation and a varying load demand, while maintaining

system frequency, voltage levels, and power grid security. However, generator
and grid disturbances can vary between minor and large imbalances in mechanical
and dectrical generated power, while the characteristics of a power system change
significantly between heavy and light loading conditions, with varying numbers of
generator units and transmission lines in operation at different times. The result is a
highly complex and nonlinear dynamic eectric power grid with many operational
levels made up of awide range of energy sources with many interaction points. [1]
** |In most modern systems the automatic voltage regulator (AVR) is a controller that
senses the generator output voltage (and sometimes the current) then initiates
corrective action by changing the exciter control in the desired direction. The speed of
the AVR is of great interest in studying stability. Because of the high inductance in
the generator field winding, it is difficult to make rapid changes in field current. This
introduces a considerable lag in the control function and is one of the major obstacles
to be overcome in designing a regulating system. [2]
ANNS are good at identifying a nonlinear system and then controlling it, and they are
suitable for multi-variable applications, where they can identify the interactions
between the inputs and outputs. This removes the need for an accurate model of the
power system. It has been shown that a multi-layer feedforward neural network using
deviation signals as its inputs can identify the complex and nonlinear dynamics of a
single-machine infinite-bus system (SMIB) system with sufficient accuracy to be
used to design a generic controller, which yields optimal dynamic system response
irrespective of the generator load and system configurations.[3,4]
SIMULINK as a software tool has been designed for solving nonlinear differential
equation in ether state space or block diagram form .1t can be called from MATLAB
using, often, a single command.
The results of the SIMULINK program can be automatically passed back to
MATLAB for further analysis .Simulations in SIMULINK run three to ten times
faster than similar program in MATLAB because SIMULINK program are compiled.
Due to these advantages offered by MATLAB/SIMULINK, this environment was
chosen for these studies.

MATHEMATICAL MODELING AND SIMULATION OF
SYNCHRONOUS MACHINE
For modding purpose, the theoretical analysis of single machine infinite-bus system
is considered to simulate the terminal voltage of excitation system.
A single machine infinite bus power system is shown in fig.1.This system consists of
a generator connected to the infinite bus through a transmission line. An infinite bus
has a fixed voltage and frequency.
The mathematical description of the synchronous machine is the same as all types of
AC machines, which have two main problems: first, is the complex 3-phase
represented differential equations, and second, is the time varying mutual inductance
between stator and rotor winding, through the dynamic response of the SG. Simply,
the first problem can be solved by using axis transformation to transfer the 3-phase
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parameters and quantities (like: voltage, current, flux....) to 2-phase parameters,
which called Park's transformation or, Park modd of SG. In which all stator
guantities are transferred from phase a, b and ¢ into equivalent dq axis new variables.
Equations (1 to 4) show the approximate Park's transformation by neglecting the zero
sequence parameters. [6, 7]

_[cos () cos (9—2?") cos (9"'2?") 1
P( _3Lin(9) sin (0 - ) sin(9+2§)]'()
S0,
-VS Va
qs] = lp@L|Iv| .. )
Vs v
IS iq
g] = P@O|i| .. 3)
15 i,
WS Y
qg]: 1P6)]. | ¥, (4

The time varying problem can be solved by using the synchronously rotating
reference frame modd, in which all stator variables associated with fictitious winding
rotating with the rotor at synchronous speed [7]. The transformation equations are:

_[cos (68.) —sin(6,)
F(0e) = [sin(@e) cos(6,) ] - (9)

il = e[
[vg = IF@L. |1 ... (6)

Figure (2) shows the synchronous generator stator and rotor windings in the
dg-axis modd, it's obviously that the effect of the fiddd winding appears only in the d-
axis, whereas the effect of the damper winding is equivalent to the rotor cage winding
of aninduction motor, which appears in both dg-axis circuits.

Therefore, the synchronously rotating reference frame equivalent circuits of the SG in
d®-g° axes can be shown in fig (3). Equations (7 to 18) show stator and rotor circuits
equations in d*-q° axes:

mstator equations: [5, 6]

. AW,

Vqs = _Iqus - welluds - 7 . (7)
dw,

V;s = _IdsRs + welluqs - TS i (8)

mrotor equations: [6, 7]
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d¥,,
0= Iqur_d_Z (9)
0= IdrRr - ar (10)
‘fitlllf

Where all rotor parameters are referred to stator circuit and the mutual and sdf
inductance of air gap (main) flux linkage are identical to Lqm and Lgm rotor to stator
reduction.

Yoo = Liglys + Lo (Igs + Lyr .. (12)
l‘”ds = Llslds+Ldm(1ds+1dr+1f) (13)
We =Lyl + Ly (lys + lar + 1) .. (14)
l‘Uqr = LlrIqr + Lqm (Iqs + Iqr v (15)
l‘”dr:Llrldr+Ldm(1ds+1dr+1f) (16)

mThe electromagnetic torque: [6, 7]

3
T, = —EPI('PdSIqS —Wlys) .. (17)
mThe motion equation: [6, 7]

_ J dwr
Tshaft —T, = P_1? (18)

The overal system simulation is shown in figure(4),and the inside
subsysteml,subsystem?2 are shown in figure (5)and figure(6).The output performance
of the system under no-load and full load condition can shown in figure(7)and

figure(8).

PID CONTROLLER

An adaptive proportional-integral-derivative (PID) controller is the most powerful
method to regulate terminal voltage of the S.G used with different operating loads
and power factors [1]. The operating principle is to sense the terminal phase voltage
and use it as a feedback signal through the PID controller to generate command
setting signal which adapt the excited voltage of the S.G, which gives an acceptable
behavior of the system for different conditions.

PID contral is one of the earliest control strategies. It has been widely used in the
industrial control fields. Its widespread acceptability can be recognized by:
the familiarity with which it is perceived amongst researchers and practitioners within
the control community, simple structure and effectiveness of algorithm, relative ease
and high speed of adjustment with minimal down-time and wide range of applications
where its rdiability and robustness produces excelent control performances.
However, successful applications of PID controllers require the satisfactory tuning of
three parameters - which are proportional gain (KP), integral time constant (K1), and
derivative time constant (KD) - according to the dynamics of the process. A
proportional controller (Kp) will have the effect of reducing the rise time and will
reduce, but never diminate, the steady —state error. An integral control (Ki) will have
the effect of eiminating the steady — state error, but it may make the transient response
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worse . A derivative control (Kd) will have the effect of increasing the stability of the
system, reducing the overshoot , and improving the transient response .

Traditionally, these parameters are determined by a trial and error approach. Manual
tuning of PID controller is very tedious, time consuming and laborious to implement,
especially where the performance of the controller mainly depends on the experiences
of design engineers. In recent years, many tuning methods have been proposed to
reduce the time consumption on determining the three controller parameters. The
most well known tuning method is the Ziegler-Nichols tuning formula; it determines
suitable parameters by observing a gain and a frequency on which the plant becomes
oscillatory. [9]

NEURAL CONTROLLER

The modd of an artificial neuron that closdy matches a biological neuron is given
by an op-amp summer like configuration shown in figure (9).
Where x1, x2, x3... are input signals, each of the input signal flows through a gain
called synaptic weight. The weight can be positive (excitory) or negative (inhibitory)
corresponding, respectively, to acceleration or inhibition [10].
The summing nodes accumulate all the input weighted signals and then pass to the
output through the transfer function which is usually nonlinear. The transfer function
can be step or threshold type, signum type, or linear threshold type. The transfer
function can also be nonlinear continuously varying type, such as sigmoid, inverse-
tan, hyperbolic, or Gaussian type. The sigmoidal transfer function is most commonly
used, and it is given by

_ 1
1+e~ax

... (19)

Where a is the coefficient or gain which adjusts the slope of the function. With
high gain, this function approaches a step function. The sigmoidal function is
nonlinear, monotonic, differentiable, and has the largest incremental gain at zero
signal, and these properties are of particular interest.

In general, neural networks can be classified as feedforward and feedback types
depending on the interconnection of the neurons. At present, the majority of the
problems use feedforward architecture, and it is of direct relevance to power
eectronics and motion control applications.

Figure (10) shows the structure of a feedforward multiplayer network with two input
and two output signals. The topology is based on Perceptron which was proposed by
Rosenblatt in 1958. The circles represent neurons and the dots in the connections
represent the weights.

The network has three layers, defined as input layer (a), hidden layer (b), and output
layer (c). The hidden layer functions as a connection between the input and the output
layers. The input and output layers have neurons equal to the respective number of
signals. The input layer neurons do not have transfer functions, but there are scale
factors, as shown, to normalize the input signals. The number of hidden layers and the
number of neurons in each hidden layer depend on the network design considerations.
The input layer transmits the signals to the hidden layer, and the hidden layer, in turn,
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transmits the signals to the output layer, as shown. The network can be fully
connected or partially connected.
back Propagation Training

Back-Propagation training algorithm is most commonly used in a feedforward
neural networks as mentioned before.
For this reason, a feedforward network is often defined as “back-prop” network.
Figure (11) shows the principle of back propagation training.
In the beginning, the network is assigned random positive and negative weights. For a
given input signal pattern, step by step calculations are made in the forward direction
to derive the output pattern. A cost functional given by the squared difference
between the net output and the desired net output for the set of input patterns is
generated and this is minimized by gradient descent method altering the weights one
at time starting from the output layer. The equations for the output of a single
processing unit are given as:

N

Netf = 2 W”X, (20)
i=1

Y? = fj(Net}) .. (21

Where | is the processing unit under consideration, p is the input pattern number X is
the output of the it" neuron connected to the jt" neuron, Wijjis the connection weight
between the i*" and j*"neurons. Net] is the output of the summing node, i.e, the
j*" neuron activation signal, N is the number of the neurons feeding thejt* neuron, f
j is the nonlinear differentiable transfer function (usually sigmoid), and Yf-’is the

output of the corresponding neuron. For the input pattern p, the squared output error
for al the output layer neurons of the network is given as

Ep = (a7 - y?)2 =235, (7 - y7)” - (22)

Wheredf is the desired output of thej*neuron in the output layer yj’, is the

corresponding actual output, S is the dimension of the output vector yP is the actual
net output vector, and dP isthe corresponding desired output vector.
Thetotal squared error E for the set of P patternsis then given by

E=2YP_ E,=1)F 1@ — YD) (29)

2 “p=1 E p=1

The weights are changed to reduce the cost functional E in a minimum value by
gradient descent method, as mentioned. The weight update equation is then given as:

_ SE
Wj;(t+ 1)=W;;() n swijP(t) .. (24)

Where 1 is the learning rate, Wi j (t +1) is the new weight and Wi j (t) is the old
weight. The weights are updated for all the P training patterns. Sufficient learning is
achieved when the total error E summed over the patterns falls below a prescribed
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threshold value. The iterative process propagates the error back-propagation [10, 11,
12].
NARMA -L2

In this work, the NARMA —L2 architecture is applied with the aid of the Neural
Network Toolbox of MATLAB software. The identification can be summarized by
theflowing steps :
a- Thefirst step in using feedback linearization (or NARMA-L2 contral) is to identify
the system to be controlled.
Neural network is trained to represent the forward dynamics of the system. One
standard modd that has been used to represent general discretetime nonlinear
systems is the NARMA-L2 model [13]:

y(k +d) = N[y(K),y(k - 1),..., y(k-n+ 1),
u,utk-1),..ukn ] (25)

where u(k)is the system input, and y(k)is the system output and k ,d, n areintegral
number and N is the function of the output system after identification.

b- The next step is to make the output system follows some reference tragjectory
by developing a nonlinear controller of the form:

yk+d) =yr(k+a) (26)
u(k) = GIy(K).y(k—1),..., y(k —n+ 1), yr(k +d),u(k- 2),...,uk—m+ )] ..... (27)

The problem with using this controller is: Training neural network to minimize
mean square error, needs to use dynamic back propagation which quite slow [14] .
One solution is to use approximate modds to represent the system. The controller
used in this section is based on
the NARMA-L2 approximate model:

Y (k+d)=f[y(K),y(k-1),...,y(k-n+1),u(k-1),...,u(k—m+ )]+ g[y(K),y(k -1),...,y(k-
n+1),u(k— 1) ,...,u(k—m+ 1)Ju(k) ... (28)

Where the next controller input is not contained inside the nonlinearity. The
advantage of this form is that controlled
input make the system output follows the reference equation(16) . The resulting
controller is:
_ yr(k+1)—fly(k),y(k—1),y(k—n+1).u(k—n+1)]
u(k) - gly(k),.y(k—n+1) u(k-n+1)] e (29)

Using this equation directly can cause realization problems, because must determine
the control input based on the output at the sametime, i.e
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y(k+d)=f[y(k),y(k-1),..,y(k n+1),u(k),u(k— 1),...,u(k—n+ 1)]+ g[y(K),...,y(k-
n+1),u(k),...,u(k-n+ Hlutk+ry . (30)

Figure (8) is referred to block diagram of the proposed AVR system synchronous
generator with NARMA-L 2 controller.

SIMULATION RESULT

The modd is inserted in the Simulink diagram and run firstly for the case with
PID controller to calculate values of overshooting and settling time from the output
response. Parameters used in the simulation studies are given beow: Machine
Parameters:
3-phase,
380V,5KVA,50HZ,Ls=13.6mH,Lf=33.4mH,Rs=1.2Q,Rf=50Q,
Excitation voltage=110V,
Rotor inertia=0.1Kg/m?.

The simulation modd for the AVR of the synchronous generator for load change
with PID controller is shown in the figure (12). It is very interesting to investigate the
effects of PID controller’s parameters Kp, Ki, and Kd on the terminal voltage
response that exist in the excitation system. Tuning the PID controller by setting the
proportional gain Kp to 10, Ki to 8, and Kd to 0.001.

The response for terminal voltage and current are shown in figure (13)and
figure(14),we note that the overshoot of the terminal voltage is (0.14) ,therise timeis
(0.8sec) and the settling time is(4.3sec).

The fidd voltage and current can be shown as in Fig(15)and Fig(16). Figure (17)
illustrates simulation system of SG with ANN. The controlling steps and output
response is discussed in the following. The graphs shown in figure (18) and figure
(19) show the performance results of the ANN and the response for the terminal
voltage and current, we note that the overshoot is approximately zero ,the rise time
and the settling time is (0.8sec),we can see the fidd voltage and current as in
Fig(20)and fig(21). Fig(22) show the comparative of the terminal voltage (Vt) step
response between PID & ANN.

CONCLUSIONS

A proportional-integral-derivative (PID) and ANN controller for a synchronous
generator is presented in this paper. Simulation studies for a single-machine power
system environment are presented to demonstrate the effectiveness of using the PID
controller, we compared PID controller result that with ANN to show the
performance of this controller. The ANN is more effective than the PID. The
improved damping performance by the neurocontrollers allows the generator to be
operated closer to its stability limit during steady state, and still remain stable after
severe disturbances.
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Figure (6) Subsystem 2
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Figure (7) Terminal voltage (Vt ) step response simulated with matlab
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Figure (12) Block diagram of a synchronous machine with PID.
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Figure (13) Terminal voltage (Vt ) step response with PID
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Figure (15) Field voltage with PID
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Figure (16) Field current with PID

Figure (17) Block diagram of a synchronous machine with
AVR simulated with ANN controller.
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Figure (19) current waveform step response with ANN
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Figure (20)Field voltage with ANN
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Figure (21) Field current with ANN
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Figure (22) Compar ative between the per for mances of
the terminal voltage by using PID & ANN
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