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Abstract 
         In this investigation, steady two – dimensional natural convection heat 

transfer of Newtonian and non-Newtonian fluids inside square enclosure has been 

analyzed numerically for a wide range of the modified Rayleigh number of (103 ≤ 

Ra ≤ 105), with non-dimensional parameter(NE) of Prandtl – Eyring model ranging 

from (0 to 10), and modified Prandtl number in the range (Pr* =1,10, and 100). 

Two types of boundary conditions have been considered. The first,is when the side 

walls are heated at different uniform temperatures and the horizontal walls are 

insulated. The second, when the bottom wall is heated by applying a uniform heat 

flux while the other walls are at the constant cold temperature. Also, the non-

Newtonian fluids under consideration were assumed to obey the Prandtl – Eyring 

model. The numerical results of the values of average Nusselt number have been 

confirmed by comparing them to similar known yeslts of previous works using the 

same boundary conditions. Good agreement was obtained. The results are 

presented in terms of isotherms and streamlines to show the behavior of the fluid 

flow and temperature fields. In addition, some graphics represent the relation 

between average Nusselt number and the parameters that are mentioned 

previously. The results show the effect of non – dimensional parameter (NE) on the 

velocity and temperature profiles. It also shows that the average Nusselt number is 

a strong function of modified Rayleigh number, modified Prandtl number, non-

dimensional parameter, and the boundary conditions. Four different correlations 

have been made to show the dependence of the average Nusselt number on the 

non-dimensional parameter, the modified Rayleigh and Prandtl numbers.    
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-  Finite Differences Method.  

  الخلاصـــــــــــة
تم إجراء دراسة عددیة لانتقال الحرارة بالحمل الطبیعي المستقر ،        في ھذا البحث

 نیوتنیة في وسط مغلق مربع الشكل ضمن مدى –ثنائي البعد لموائع نیوتنیة وغیر
وللمقدار اللا بعدي للمودیل الریاضي )  Ra ≤ 105 ≥ 102(واسع لعدد رالي المطور 

)Prandtl – Eyring ( یمتد من)0.≤.NE≤ 10 ( ولعدد براندتل المطور أخذ في
عندما ، الأول. افترض نوعان من الظروف الحدیة). Pr* =1,10, and 100(المدى 

تكون الجدران الجانبیة مسخنة إلى درجات حرارة مختلفة ومنتظمة والجدران الأفقیة 
ر حراري ثابت بینما عندما یكون الجدار السفلي مسخن بمصد، الثاني. معزولة

كذلك افترض أن سلوك الموائع . الجدران الأخرى عند درجة حرارة منخفضة وثابتة
لقد تم مقارنة النتائج ). Prandtl – Eyring( نیوتنیة یخضع للمودیل الریاضي –غیر

العددیة لمعدل عدد نسلت لھذه الدراسة مع الدراسات السابقة باستعمال نفس الظروف 
تم تمثیل نتائج . إن الحل العددي الحالي مقارب جداً لھذه البحوثووجد ، الحدیة

الدراسة بدلالة خطوط درجات الحرارة الثابتة وخطوط الانسیاب لبیان سلوك درجة 
 رسومات بیانیة أخرى تمثل علاقة معدل عدد علاوةعلى. الحرارة والجریان في الحیز

حالیة بینت تأثیر المقدار اللا بعدي إن الدراسة ال. نسلت مع المعاملات المذكورة أعلاه
)NE (كذلك بینت إن عدد نسلت ھو دالة قویة من عدد .  السرعة ودرجة الحرارةفي

تم .  والظروف الحدیة) NE(بعدي .رالي المطور وعدد براندتل المطور والمقدار اللا
ى إیجاد علاقات تقریبیة تمثل اعتما دیة معدل عدد نسلت على عدد رالي المطور وعل

 عدد براندتل
 NE).(المطور والمقدار اللا بعدي 

 

Nomenclature 

NE  = Fluid index of Prandtl – Eyring 

model 2L
B α

= .     

A.&.B = Fluid consistency indices for 

the Prandtl – Eyring model (kg/m.s2) & 

(s) 

u        = Fluid velocity in x-direction 

(m/s).                            

v        = Fluid velocity in y-direction 

(m/s). 

x& y  = Cartesian coordinates.  

P       = Pressure (Pa). 

g       = Gravitational acceleration (m/ 

s2).          

L       = Width and Height of 

enclosure (m). 

k       = Thermal conductivity of fluid 

(W/m. K ). 

q       = Heat flux ( W /m2 ) 

Pr     = Prandtl number = (υ /α).  
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Pr*   = Modified Prandtl number = 

αρ
AB

o

. 

Ra   = Modified Rayleigh number 
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h      = Heat transfer coefficient (W 

/m2. K ). 

Nu   = Nusselt  number = 
)( ch TTk

qL
−

. 

Nua  = Average Nusselt number.   

T     =  Temperature (K).  

yx ΔΔ & = Grid size in the x and y 

directions, respectively (m). 

 

 

Greek Symbols  

yxτ  = Shear stress (Pa) 

=










∂
∂

∂
∂

− )
y
uBsinhA 

y
uμ

1(
  

xxτ  = Normal stress in the x direction. 

yyτ  = Normal stress in the y direction. 

ρ     = Density (kg/m3). 

α     = Thermal diffusivity (m2/s). 

β     = Thermal expansion coefficient                                                                                                                               

ψ    = Stream function (m2/s). 

ω    = Vorticity (1/s).  

ΔT  =  Temperature difference (K). 

θ    = DimensionlessTemperature 

 =  

B.C.2for               

k
qL

TT

B.C.1for              
TT
TT

c

ch

c
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θh   = The dimensionless Temperature 

of the heated wall. 

μ    = Dynamic viscosity, (kg/m.s). 

υ    =  Kinematic viscosity of fluid 

(m2/s). 

  

  

-: Introduction .1  

            Natural convection heat 

transfer of Newtonian and non – 

Newtonian fluids inside enclosures has 

been the subject of several studies in 

the last years. The attention is due to 

the wide range of applications such as 

building insulation, solar cavity 

receivers, ventilation of rooms, storage 

of grease, mineral oil, or crude oil in 

containers, nuclear reactor insulation, 

crystal growth in liquids, and the 

cooling of electrical components [1]. 

Natural convection heat transfer in 

enclosures involves different aspects 

of problems. This variety of problems 

comes from possibly geometry 

characteristic of enclosures, kind of 

fluid, nature of fluid flow, orientation 

of the enclosure etc. Most studies on 

natural convection in enclosures, based 

on 2D or 3D parallelogram enclosure 

For Newtonian fluids                                

  non-Newt. Fluids                                        
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investigation, annuli and cylinders 

with different aspect ratio or 

diameters, or caliber. It's very 

interesting because of sensibility of 

natural convection phenomena from 

geometry. Also there is, type of fluid 

with influence on natural convection 

phenomena [2]. In the present work, a 

numerical study is performed to 

analyze the natural convection heat 

transfer of Newtonian and non – 

Newtonian fluids inside square 

enclosure under two different cases of 

boundary conditions. The fluid motion 

and heat transfer are affected by 

modified Rayleigh number, modified 

Prandtl number, and non – 

dimensional parameter (NE) of Prandtl 

– Eyring model. The non – 

dimensional parameter (NE) 

determines the nature of fluid, that is, 
Newtonian (NE = 0) and non – 

Newtonian fluids (NE > 0). The mass, 

momentum, and energy conservation 

equations, which are considered to 

describe the fluid flow and heat 

transfer for natural convection are 

nonlinear and because of this non- 

linearity, some difficulties have arisen 

in numerical as well as in analytical 

studies. One of the greatest difficulties 

with the numerical studies is the 

problem of divergence of the iterative 

methods since an analytical solution of 

the actual problem is extremely 

difficult, if not possible, a number of 

assumptions together with using the 

computational fluid dynamic 

techniques are made to obtain 

approximate results.  

    
2 .Mathematical Formulation :- 
 

            Consider steady state, two – 

dimensional, laminar flow of a non – 

Newtonian fluid with constant physical 

properties (kinematics viscosity, 

thermal diffusivity, and thermal 

expansion coefficient) enclosed in a 

square enclosure of side length (L) 

under two different cases of thermal 

boundary conditions, these boundary 

conditions are:  

Case(I) :-   

            The vertical walls are heated 

to different uniform temperatures 

( c h T T & )  and the horizontal walls are 

perfectly insulated (B.C.1), as shown 

in Fig.(1a). 

Case(II) :-   

            The lower wall is heated by 

applying a uniform heat flux (q) and 

the other walls are isothermally cooled 

( cT ) (B.C.2), as shown inFig.(1b). 

            Density is also considered as 

constant value but for buoyant term it's 

linearised by relation: 

)]([ oo TTβρρ −−= 1                                                                                                                (1)  
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where β is thermal expansion 

coefficient for temperature oT . 

            The governing equations are 

the following: 

0=
∂
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+
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u   (2)                                                                                                             

y
τ

x
τ

x
p

y
uv

x
uuρ yxxx

o ∂

∂
+

∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂ )( (3)                                                                             

ρg
y
τ

x
τ

y
p

y
vv

x
vuρ yyxy

o −
∂

∂
+

∂

∂
+

∂
∂

−=
∂
∂

+
∂
∂ )(      (4)    

)(
2

2

2

2

y
T

x
Tα

y
Tv

x
Tu

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂      (5)          

                                                 

            In the above equations, (u, v, 

α, P, T ) are the fluid velocity 

components (Fig.1), the thermal 

diffusivity, the pressure and the 

temperature. In fact Eqs.(2 to 5) are 

system of partial differential equations. 

They are base for natural convection 

phenomenon for 2D enclosures, 

presented by mass, momentum and 

energy conservation equations. 

As mentioned in Ref.[3], the Prandtl – 

Eyring model for non – Newtonian 

fluids can be represented as: 

)(
y
uB sinhAτ

∂
∂

= −1                                                                                                         

Hence, the shear stresses: are 

)(
x
uB sinhAτ xx ∂

∂
= −12                                                                                                   

)(
y
vB sinhAτ yy ∂

∂
= −12                                                                                                

)]1

x
v

y
uB sinhAττ yxxy ∂

∂
+

∂
∂

== − ([                                                                                  

where A and B are the fluid 

consistency indices for the Prandtl – 

Eyring model. 

            Since it proves to be more 

convenient to work in terms of a 

stream function and vorticity, the 

stream function ψ(x,y) is introduced in 

the usual manner: 

y
ψu

∂
∂

=   &    
x
ψv

∂
∂

−=  (10) 

                                                                                                     

            It is evident from Eq.(10) that 

the stream function satisfies the 

continuity equation identically. more 

Further, for this plane flow field, the 

only non – zero component of the 

vorticity is:   

y
u

x
vω

∂
∂

−
∂
∂

=                                                                                  

            Combining the definition of 

vorticity and the velocity components 

in terms of the stream function, and 

cross – differentiating the Eqs.(3) and 

(4) reduce the number of equations and 

eliminate the pressure terms, and 

substituting for (ρ) from Eq.(1), a new 

set of equations is obtained with 

independent variables ψ, ω and T: 

-ω
y
ψ

x
ψ

=
∂
∂

+
∂
∂

2

2

2
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(6)  

(7) 

(8) 

(9)  
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             Now, the mathematical problem 

formulated above was placed in 

dimensionless form by defining the new 

dimensionless variables [4]: 

L
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   Inserting all the dimensionless 

variables into Eqs.(12) to (16), yields the 

following final non – dimensional 

equations: 
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2L
B αNE =    is the non- dimensional 

parameter of Prandtl – Eyring model.  

 

 

3. Numerical Method :- 

          Numerical methods have been 

developed to handle problems involving 

nonlinearities  in the describing equations, 

or complex geometries involving 

complicated boundary conditions. A 

finite-difference technique is applied to 

solve the governing equations. These three 

equations (Eqs.(17), (18), and (19)) are to 

be solved in a given region subject to the 

condition that the values of the stream 

function, temperature, and the vorticity, or 

their derivatives, are prescribed on the 

boundary of the domain. The finite 

difference approximation of the governing 

equations is based on dividing the 

( 10 * ≤≤ x ) interval into (m) equal 

segments separated by (m+1) nodes. 

Likewise, the ( *y ) interval was divided 

into (n) segments. The usual procedure for 

obtaining the form of partial differential 

equation with finite-difference method [5] 

is to approximate all the partial derivatives 

in the equation by means of their Taylor 

series expansions. 

          Eq.(17) can be approximated using 

central – difference at the representative 

interior point (i,j), thus, Eq.(17) can be 

written for regular mesh as: 
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          Also, a central – difference 

formulation can be used for Eqs.(18), 

and (19). But this problem will need to 

be solved for reasonably high values of 

modified Rayleigh numbers; it is 

known that such a formulation may not 

be satisfactory owing to the loss of 

diagonal dominance in the sets of 

difference equations, with resulting 

difficulties in convergence when using 

an iterative procedure.  

          A forward – backward technique 

can be introduced to maintain the 

diagonal dominance coefficient of 

(ωi,j) in Eq.(18) and (θi,j) in Eq.(19) 

which determines the main diagonal 

elements of the resulting linear system; 

his technique is outlined as follows 

[6]: 

Set;  *
11 j,-i

*
j,i ψψγ −= +     and 

*
1

*
1 -ji,ji, ψψβ −= +          (25) 

Then approximate Eq.(18) by:  

(24)  
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and Eq.(19) by:  
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of the coefficient matrix for 
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expressed in the following difference 
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            An under – relaxation technique 

can be applied to accelerate the 

convergence of Eq.(28); the expression is 

used in this technique presented in the 

following :  

)()()( computedωFvωFvω *
ji,

k* 
ji,

k* 
ji, +−=+ 11

                             

(27)  

(28)  

(29)  

  

(26)  

(27)  
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Where (Fv) is the relaxation factor for the 

vorticity. The value of this relaxation 

factor is in the range of (0 to 2). 

            In order to obtain results of the 

conservation equations, The above 

equations (Eqs.(24), (28), and (29)) are 

subjected to the following boundary 

conditions [7]: 
 :)I(Case   
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             Also, the following finite 

difference equation for the vorticity at a 

wall is adopted as the boundary condition 

for the vorticity equation:    

2Δ
)(3 1

2
1 ω

n
ψψ

ω o
o −

−
=      where, 

x    yn ∆∆=∆ or  

            The physical quantities of interest 

in this problem are the local Nusselt 

number along the heated wall [8], defined 

by:          

)( ch TTk
qLNu

−
=                                                                                                   

and also the average Nusselt number, 

which is defined as: 

- :)I(Case   

dy
x
θNu

  x
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*
∫

=∂
∂

=
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0 1or0

                                      

 

- :)II(Case   

dx  
θ

Nu
h

a ∫=
1

0

1                                                                                                          

            The numerical work starts with 

giving the distributions of stream function 

and temperature for natural convection as 

the zeroth-order approximation. Then, 

obtain the zeroth-order approximation of 

vorticity: no flow and pure conduction. 

Based on these old fields, equation (24) is 

used to determine point-by-point the new  

( *ψ )  field, and equation (28) is used to 

determine the new ( *ω ), while the energy  

equation (29) is used to  determine  the  

new  (θ ) field.  The iteration process is 

terminated under the following condition: 

(31)  

(32) 

(33) 
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(r) denotes the iteration step. 

 );or,,( * θωψ    *where,(τ) stands for 

either   

            Before starting the computational 

solution, the grid independence of the 

results must be tested. Thus, numerical 

experiments have been carried out to solve 

a two – dimensional convection problem 

in which the non – dimensional parameter 

(NE = 0). The modified Prandtl number in 

this test is set to be (6.7), while the grid 

size varies from (10×10) to (60×60) for 

different values of modified Rayleigh 

number as shown in Fig.(2). It is found 

that the change in the Nusselt number for 

grid size of (35×35) and (45×45) is less 

than (0.8) percent for the range of 

modified Rayleigh number 

( 53 1010 ≤≤ ERa ). Therefore, the 

number of grid that is adopted in the 

present study is (35×35) for both two 

cases. The number of grid point was 

selected as a compromise between 

accuracy and speed of computation. 

 

4. Results and Discussion :-  

Case (I) :- Square enclosure under B.C.1 

a-Temperature and Flow Fields: 

            The contour lines of the 

temperature distribution and flow fields 

for different values of system parameters 

are presented in Figs.(3) to (6). In this 

case, the energy is transported from hot 

wall to cold wall by conduction (i.e. 

Nua=1) at modified Rayleigh number and 

non – dimensional parameter (NE) are less 

than (103) and (1) respectively. In the 

conduction regime, the isotherms are 

almost parallel to isothermal walls. As RaE 

or NE increases, a circulatory motion is 

established because of the buoyancy 

effects. The flow consists of a single cell 

filling the entire enclosure and rotating 

slowly in the clockwise direction. Initially, 

the convection cell show a diagonal 

symmetry about the two central lines of 

enclosure, and, it has a maximum value 

for the stream function (ψmax=1.549) at 

10and,1,100 === NE Pr Ra *
E . The 

small value of ψmax characterizes a very 

weak convective flow. However, an 

increase in RaE or NE results in an 

asymmetric flow pattern producing closer 

streamlines near the walls, and change the 

direction of the isotherms, as shown in 

Figs.(3) and (4). As RaE is increased 

further for a given NE, or NE is increased 

for high values of RaE , the streamlines 

more closer to the vertical walls, 

producing strong boundary layer effects 

on the isothermal walls. As a result, the 

stratified region become bigger, as shown 

in Figs.(5) and (6). Although the flow 

remains unicellular at all modified 

Rayleigh numbers and non- dimensional 

parameters (NE), the velocity in the upper 

right corner and lower left corner 

increases substantially.  

            Fig.(7) represent the variation of 

stream function with modified Rayleigh 

number compared for different values of 

non – dimensional parameter and 

modified Prandtl number (Pr*=10). At 
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low Rayleigh (RaE < 103), ψ seems to be 

invariable with Pr* and NE (i.e. at NE < 

1), this is due to dominance of conduction 

as mentioned before. At higher RaE, the 

stream function (ψ) increases with 

increasing Pr* or NE, and reaches a 

stationary value for NE ≥ 1, at RaE ≥ 104. 

It is also seen that the value of ψmax 

increases and reaches the peak value at 

RaE = 105, for Pr* = 100 and NE = 1. It is 

also show that the peak value of ψmax 

depends on RaE and NE at a fixed Pr*.  

            Fig.(5a) shows the streamlines at 

RaE = 105, Pr* =1 and NE = 0. This flow 

consists of one large cell rotating in the 

enclosure. It also shows the flow rising in 

a layer near the heated wall, turning the 

corner at the top of the enclosure, moving 

adjacent the insulated wall, and flowing 

downward in a layer near the cooled wall. 

It also indicates the flow has a maximum 

value for the stream function (ψmax= 

11.24). This case has been studied by 

many investigators [9 to 11] for a square 

enclosure filled with a Newtonian fluid 

(NE = 0), and serves as a base case.  

 

b-Heat Transfer Coefficient:  

            To understand the heat transfer 

process by natural convection, the heat 

transfer coefficient (h), must be to 

evaluated but to make the present work 

have generality, the calculated results 

must be in dimensionless form. Therefore, 

one must be needed to evaluate Nusselt 

number (Nu) as a function of influence 

parameters. Fig.(8) shows the variation in 

average Nusselt number versus modified 

Rayleigh number with different values of 

non – dimensional parameter and 

modified Prandtl number (Pr*=10) on the 

hot wall of the enclosure. It is clear that 

aNu  equal to one in the conduction 

regime. The reason is that the viscous 

force is greater than the buoyancy force 

therefore the heat is transported by 

conduction. It is also seen that for range of 

modified Rayleigh number before (103), 

the rate of increase in aNu  against RaE 

for different values of NE and a fixed Pr* 

is relatively small. But, aNu increases 

rapidly as NE increases for RaE0≥ 103 

expressing the increase in convective heat 

transfer. It is also noticed that the effect of 

NE on aNu  is more pronounced as the 

RaE numbers increase.   

 
Case (II) :- Square enclosure under B.C.2 

a-Temperature and Flow Fields: 

            Figs.(9) to (14) show the contour 

lines of the temperature distribution and 

flow fields for the present case. 

            A change in boundary conditions 

from (Case (I)) to (Case (II)), modifies the 

temperature and velocity fields 

significantly. Initially (i.e. at *
ERa = 10) 

the flow consists of a single cell filling the 

entire enclosure and rotating slowly in the 

clockwise direction. However, an increase 

in *
ERa  or NE results in changing the flow 

pattern from unicellular to multicellular 

flow. Fig.(13c) shows the streamlines at 
*
ERa  = 105, NE = 0.1, and Pr* = 10. This 
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flow exhibits two counter – rotating cells, 

each covering half of the enclosure. Both 

components have the same maximum 

magnitude (ψmax = 24.36), but are of 

opposite sign indicaties an opposite 

direction of flow. These two cells are 

symmetric about the center line of the 

enclosure. The convective velocity near 

the wall is lower than that along the line of 

symmetry. It also indicates the flow rising 

slightly in the middle, turning at the top of 

the enclosure, moving adjacent the cold 

wall, turning, and falling down the vertical 

cold wall.  

            As *
ERa  or NE increases more the 

streamlines moves closer toward the line 

of symmetry, producing a strong boundary 

layer effects on the middle region of the 

enclosure, and increase the convective 

velocity in the upper and lower middle 

region of the enclosure as shown in 

Figs.(9) and (11). Fig.(15) represent the 

variation of ψ with *
ERa  for different 

values of NE and Pr*=10. 

            Furthermore, the isotherms are 

symmetric about the vertical line at x.=.0.5 

for different values of system parameters, 

and the maximum temperature θmax  

always occurs at the middle of the lower 

wall, and is a function of *
ERa , NE, and 

Pr*.  

            Furthermore any increase in *
ERa  

or NE causes a high change in temperature 

field which concentrates in the small 

region near the top surface as shown in 

Figs.(10), (12), and (14). The isotherms in 

the upper region are almost horizontal for 

a large portion of the enclosure which 

allows a large amount of heat to be 

rejected on the top wall, and gives the 

vertical walls weaker effects than that in 

case (I). For a fixed *
ERa , the amount of 

energy removed on the top wall is 

increased with NE. Indeed, the large scale 

modification in the temperature and flow 

fields due to the change in the boundary 

conditions from (Case(I)) to (Case (II)) is 

mostly concentrated in small region, near 

the top surface. A significant amount of 

energy is also rejected at the vertical 

surfaces when the *
ERa  or NE is small. 

However, the heat transfer on this surfaces 

decreases with an increase in *
ERa  or NE 

which clearly implies that the effect of the 

vertical walls boundary Conditions 

diminishes with higher velocities or higher 
*
ERa .  

b-Heat Transfer Coefficient: 

            The average Nusselt number as 

defined by Eq.(33) is presented in 

Fig.(16). It is seen that *
ERa  and NE are 

less than (104) and (1) respectively, the 

rate of increase in aNu  is relatively small. 

Then, aNu  increases rapidly as *
ERa  or 

NE increases expressing the existence and 

increase convective heat transfer. As 

already indicated by the temperature field, 

the average Nusselt number for the present 

case is higher than that for the case (I) for 

the same given condition. 

            Finally, four correlation equations 

have been predicted depending on 
variation in modified Rayleigh number, 
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modified Prandtl number, and non – 

dimensional parameter of the Prandtl – 

Eyring model for both two cases, by using 

least square method.                                                                                                    

 

Case (I):   Square      enclosure    under     

B.C.1                                                                                                                                                                                             
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Case (II): Square enclosure under B.C.2                                                          
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            The above correlations are 

acceptable in the range of modified 

Rayleigh number (102 to 105), modified 

Prandtl number (1 to 100), and non – 

dimensional parameter ( NE= 0 to 10 ).                                        

            To ensure that these approximation 

correlations are usable, the coefficient of 

determination (R) had been obtained for 

each equation.  The minimum value of (R) 

was (0.874), that means these approximate 

equations are good for predicting the value 

of average Nusselt number. Figs.(17) and 

(18) show the comparison between 

numerical and predicted results. 

Agreement between numerical and 

predicted is close, although most the 

predicted points lie near the theoretical 

line.        

            Further, values of the average 

Nusselt number along the hot wall of the 

square enclosure under (B.C.1) at the 

steady-state flow for (RaE= 103, 104, 105 

and 106) and at modified Prandtl number 

of (Pr* = 0.71 and 6.7)  are given in  

Table (1). It is seen again that the present 

values of (Nua) are in very good 

agreement with that obtained by different 

authors, such as Elba.et.al.[1]. Subba [9] 

has analyzed a similar problem for 

different values of modified Rayleigh 

numbers. The comparison with his results 

show agreements within (± 4 ℅). Subba 

[9] presented his results in a graph and 

some errors might have been introduced in 

reading the graph. Also, as shown in Table 

(1,b), there are some differences between 

the present work and those of Hortmann et 

al.[10] and Davis [11]. These differences 

are due to the finite difference 

approximation and the computing system 

used.  

    

 

5. Conclusions :-  

             The present numerical solutions 

for natural convection heat transfer of 

Newtonian and non-Newtonian fluids for 

square enclosure under two different cases 

of boundary conditions (B.C.1 and B.C.2), 

show that the effects of the enclosure and 

the type of fluid on the flow development 

(34) 

(37) 

(36) 

(35) 
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and the energy transfer are dominant and 

complex. The main conclusions of the 

present study are: 

1- For the two cases that have been 

solved, it has been demonstrated that the 

average Nusselt number  is a strong 

function of modified Rayleigh number, 

non – dimensional parameter (NE), and 

modified Prandtl number, also the results 

show the average Nusselt number: 

a- increases as (Ra) increases, for a given 

values of (NE) and (Pr*). 

b- increases as (NE) increases except for        

(NE > 0.1) at (Ra ≥105), for a given value 

of (Pr*). 

c- increases as (Pr*) increases, for a given 

values of (Ra) and (NE). 

d- aNu  for the second case of boundary 

conditions (B.C.2) is always higher than 

for the first case (B.C.1).                                                      

2- For large modified Rayleigh number, 

the non – dimensional parameter (NE) of 

the Prandtl – Eyring model has, for a 

given modified Rayleigh and Prandtl 

numbers, a large effect on the heat transfer 

rate. The peak in average Nusselt number 

occurs between (0.1≤ NE ≤10), depending 

upon modified Rayleigh and Prandtl 

numbers. As the (Ra) increases, the value 

of non – dimensional parameter at which 

maximum average Nusselt number takes 

place shift towards lower values of (NE) 

for all values of (Pr*), while for small 

(Ra), it does not have much effect on the 

heat transfer because in this situation, the 

convection is very weak and the dominant 

mode of energy transfer is conduction.  

3- For Case(II), The maximum 

dimensionless temperature is always 

located at the middle of the bottom wall. 

4- In the first case of the boundary 

conditions (B.C.1), the flow is mainly 

single cell flow, while in the second case 

(B.C.2), the flow consists of two counter-

rotating cells, each covering half of the 

enclosure. This flow causes significant 

increasing in the heat transfer rate  as (Ra 

or NE) increases, since it has stronger 

circulation  warm effects on the fluid 

motion. 

5-.The study shows how to predict the 

effectiveness of a given enclosure in terms 

of energy transfer or to design an efficient 

one by suitably selecting the type of fluid 

or the shape of the enclosure or both. 
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Table (1) Nusselt number comparison 
for the case of the square enclosure 
filled with Newtonian fluids and heated 
from the side.    a- Pr*=0.71,        b- 

Pr*=6.7         
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Fig.(1) Physical model and coordinate 

system. (a) case (I); (b) case (II) 
 
 
 
 
 
 
 
 
 
 
 

Fig.(2) Variation of  Nusselt  number 
with the number of grid points for 

different modified Rayleigh 
number.     Case (I) . 
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(c)                                               (d)     
Fig.(3) Pattern of streamlines for RaE =103  

and Pr*=10. (a) NE=0, (b) NE=0.1, (c) NE=1, 
(d) NE=10.          For Case (I)  
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Fig.(4) Pattern of isotherms for RaE =103 
and Pr*=10. (a) NE=0, (b) NE=0.1, (c) NE=1, 

(d) NE=10.         For Case (I) 
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(c)                                               (d) 
 
Fig.(5) Pattern of streamlines for RaE =105 

and Pr*=1. (a) NE=0, (b) NE=0.003, (c) 
NE=0.01, (d) NE=0.1.      For Case (I) 
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Fig.(6) Pattern of isotherms for RaE =105 
and Pr*=1. (a) NE=0, (b) NE=0.003, (c) 
NE=0.01, (d) NE=0.1.      For Case (I)  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(7) Variation in               max)(ψ  with 
the RaE for    different values of NE and 

Pr*=10.  Case (I) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.(8) Variation in aNu  with the RaE for 

  different values of NE and Pr*=10.  
Case(I) 
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(a)                                                 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)                                               (d) 
 

Fig.(14) Pattern of isotherms for Ra*
E =105 

and Pr*=10. (a) NE=0, (b) NE=0.03, (c) 
NE=0.1,   (d) NE=1.       For Case (II) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(18)0Numerical results vs. Predicted 
results of correlation equation.   Case (II)  

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.(16) Variation of Nua with the *

ER  for 
 different values of NE and Pr*=10.  

Case(II) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(17)0Numerical results vs. Predicted 
results of correlation equation.   Case (I) 
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