On Left σ -Centralizers of Jordan Ideals And Generalized Jordan Left (σ, τ) -Derivations of Prime Rings

Dr. Anwar Khaleel Faraj 6 & Dr. Abdulrahman H. Majeed**

Received on: 6/6/2010 Accepted on: 3/2/2011

Abstract

In this paper we generalize the result of S. Ali and C. Heatinger on left σ centralizer of semiprime ring to Jordan ideal, we proved that if R is a 2-torsion free
prime ring, U is a Jordan ideal of R and G is an additive mapping from R into
itself satisfying the condition $G(ur + ru) = G(u)\sigma(r) + G(r)\sigma(u)$, for all $u \in U, r \in R$. Then $G(ur) = G(u)\sigma(r)$, for all $u \in U, r \in R$. Also, we extend the
result of S. M. A. Zaidi, M. Ashraf and S. Ali on left (σ, σ)-derivation of prime ring
to Jordan ideal by introducing the concept of generalized Jordan left (σ, τ)derivation.

Keywords: centralizer, σ -centralizer, (σ, τ) -derivation, left (σ, τ) -derivation, generalized (σ, τ) - derivation, prime ring.

حول تمركز - σ الايسر على مثاليات جوردان و مشتقات - (σ, τ) جوردان اليسرى المعممه للحلقات الاوليه

الخلاصة

في هذا البحث عممنا نتيجة S. Ali و C. Heatinge على تمركز - σ الايسر للحلقه شبه الاوليه الى مثالي جوردان, برهنا اذا كانت R حلقه اوليه طليقة الالتواء من النمط 2, U مثالي G مثالي حوردان فــــي R و كا دالــــه تجميعيـــه مـــن R الــــى R بحيـــث $G(ur) = G(u)\sigma(r)$ مثالي $R \ni r$, $U \ni u$ كل $G(ur + ru) = G(u)\sigma(r) + G(r)\sigma(u)$, $G(ur) = G(u)\sigma(r) + G(r)\sigma(u)$ لكل $R \ni r$, $U \ni u$ كما تقدة -($R \ni r$, $U \ni u$ مثالي جوردان اليسرى للحلقه النوري عمنا النمط 2, $G(ur + ru) = G(u)\sigma(r)$ والم مثلقة المعممه.

1. Introduction

hroughout the present paper R will denote an associative ring with center Z(R), not necessarily with an identity element. We will write for all $x, y \in R$, [x, y] = xy - yx and $x \circ y = xy + yx$ for the Lie product and Jordan product, respectively. A ring *R* is said to be prime if xRy = 0implies that x = 0 or y = 0 and *R* is semiprime in case xRx = 0 implies x = 0, [1]. An additive subgroup *U* of *R* is said to be Jordan ideal (resp. Lie ideal) of *R* if $u \circ r \in U$ (resp. [u, r] $\in R$), for all $u \in U, r \in R$, [1]. A ring *R* is called n-torsion free,

* Applied Sciences Department, University of Technology /Baghdad

https://doi.org/10.30684/etj.29.3.11

2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

^{**} College of Science, University of Baghdad /Baghdad

where n is an integer in case nx = 0, for $x \in R$, implies x = 0, [1]. An additive mapping $d: R \rightarrow R$ is called derivation if d(xy) = d(x)y + xd(y), for all $x, y \in R$, [2]. An additive mapping $d: R \rightarrow R$ is called Jordan derivation if $d(x^2) = d(x)x + xd(x)$, for all $x \in R$, [2]. It is clear that each derivation is a Jordan derivation. The converse is not true in general. Hersetine's result [2], states that each Jordan derivation of 2-torsion free prime ring is a derivation. Awtar [3] generalized this result on Lie ideals. M. Bresar [4], introduced the definition of generalized derivation to be an additive mapping $F: R \rightarrow R$ such there exists a derivation $d: R \to R$ such that F(xy) = F(x)y + xd(y),for all $x, y \in R$. We call an additive mapping $F: R \rightarrow R$ is a generalized Jordan derivation if there exists a Jordan derivation $d: R \rightarrow R$ such that $F(x^2) = F(x)x + xd(x)$, for all $x \in R$, [5]. M. Ashraf and N. Rehman and S. Ali in [6], showed that in a 2torsion free prime ring R, every generalized Jordan derivation on Lie ideal U of R such that $u^2 \in U$ for all $u \in U$ is a generalized derivation on U.

An additive mapping $d: R \to R$ is called left derivation (resp. Jordan left derivation) if d(xy) = xd(y) + yd(x),(resp. $d(x^2) = 2xd(x)$, for all $x \in R$) for all $x, y \in R$, [7]. Clearly, every left derivation is a Jordan left derivation and the converse is not true in genral. In [7] M. Ashraf and N. On Left σ -Centralizers of Jordan Ideals And Generalized Jordan Left (σ , τ)-Derivations of Prime Rings

Rehman proved that every Jordan left derivation of 2-torsion free prime ring on Lie ideal U of R is a left derivation on U. According to S. Ali and C. Heatinger [8], $F: R \to R$ is a generalized derivation iff F is of the form F = d + G, where d is a derivation and G is a left centralizer on R. Following B. Zalar [9], an additive mapping $G: R \rightarrow R$ is called left (resp. right) centralizer if G(xy) = G(x)y(resp. G(xy)= xG(y)), for all $x, y \in R$. If $a \in R$, then $L_a(x) = ax$ is left centralizer and $R_a(x) = xa$ is a right centralizer. If G is a left and right centralizer, then G is centralizer, [9]. An additive mapping $G: R \rightarrow R$ is called Jordan left (right) centralizer in case $G(x^2) = G(x)x$ (resp. $G(x^2)$) = xG(x)), for all $x \in R$, [8]. Obviously everv left (right) centralizer is a Jordan left (right) centralizer. The converse is in general not true (see [10], Exapmple 1). In [9], B.Zalar proved that every Jordan left centralizer (resp. Jordan centralizer) on a 2-torsion free semiprime ring Ris a left centralizer (resp. centralizer). Recently, E. Albas [10] introduced the following definitions which are generalizations of the definitions of centralizer and Jordan centralizer. Let σ be an endomorphism of R. A Jordan σ -centralizer of R is an additive mapping $G: R \to R$ satisfying $G(xy + yx) = G(x)\sigma(y) + \sigma(y)G(x)$

 $G(xy + yx) = G(x)\sigma(y) + \sigma(y)G(x)$ = G(y)\sigma(x) + \sigma(x)G(y), for all x, y \in R. An additive mapping

 $G: R \rightarrow R$ is called a left (resp. right) σ -centralizer of R if $G(xy) = G(x)\sigma(y)$ (resp. G(xy)) $= \sigma(x)G(y)$, for all $x, y \in R$. If G is a left and right σ -centralizer, it is natural to call G is an σ -centralizer. It is clear that for an additive mapping $G: R \to R$ associated with а homomorphism $\sigma: R \to R$, if $L_a(x) = a\sigma(x)$ and $R_a(x) = \sigma(x)a$ for a fixed element $a \in R$ and for all $x \in R$, then $L_{\alpha}(x)$ is a left σ -centralizer and $R_a(x)$ is a right σ -centralizer. Clearly every centralizer is special case of a 1-centralizer, where 1 is the identity mapping on *R* .

Let $G: R \to R$ be an additive mapping and is a σ be an endomorphism of R. We call G a Jordan left (resp. right) σ -centralizer if $G(x^2) = G(x)\sigma(x)$ (resp. $G(x^2)$

 $= \sigma(x)G(x)$, for all $x \in R$. Oboivously every left (resp. right) σ -centralizer is Jordan left (resp. right) σ -centralizer.

In [10], Albas proved, under some conditions, that in a 2-torsion free semiprime ring R, every Jordan left σ -centralizer of R is a left σ -centralizer of R.

If $G: R \to R$ is a centralizer, then an easy compution gives that G(xyx) = xG(y)x, for all $x, y \in R$. A natural question is to ask wether the converse is also true.

In [11], J. Vukman gave the affirmative answer in case R is a 2 - torsion free semiprime ring.

On Left σ -Centralizers of Jordan Ideals And Generalized Jordan Left (σ , τ)-Derivations of Prime Rings

In [10], Albas proved, under some conditions, that in a 2-torsion free semiprime ring R, every Jordan σ -centralizer of R is a σ -centralizer of R. According to [8], M. N. Daif, M. S. Tammam El-Sayiad and C. Heatinger proved that in a 2-torsion free semiprime ring R, for an endomorphism σ of R and for an additive mapping $G: R \to R$ such that $G(xyx) = \sigma(x)G(y)\sigma(x)$, for all $x, y \in R$, then G is a σ -centralizer of R. In [12], L. Molnar proved that if R is a 2-torsion free semiprime ring and $G: R \rightarrow R$ is an additive mapping such that G(xyx) = G(x)yx, for all $x, y \in R$, then G is a left (right) centralizer. In 2008, S. Ali and C. Heatinger [8] generalized Molnar's result as follows: if R is a 2-torsion free semiprime ring, σ be an endomorphism of R and $G: R \to R$ is an additive mapping such that $G(xyx) = G(x)\sigma(y)\sigma(x)$ (resp. $G(xyx) = \sigma(x)\sigma(y)G(x)$, for all $x, y \in R$, then G is a left (right) σ - centralizer of R.

In section 3, we generalize the above mentioned results for a Jordan ideal.

Given some endomorphisms σ and τ of R, an additive mapping $d: R \to R$ is called a (σ, τ) -derivation if $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$, for all $x, y \in R$. Recall that a Jordan (σ, τ) -derivation, as defined in [13], is an additive mapping $d: R \to R$ satisfying $d(x^2) = d(x)\sigma(x) + \tau(x)d(x)$, for

all $x \in R$. An additive mapping $F: R \rightarrow R$ is called a generalized (σ, τ) -derivation on R if there exists an (σ, τ) derivation $d: R \rightarrow R$ such that $F(xy) = F(x)\sigma(y) + \tau(x)d(y)$, for all $x, y \in R$, [13]. An additive mapping $F: R \rightarrow R$ is called a generalized Jordan (σ , τ)-derivation if there exists a Jordan (σ, τ) -derivation such that

 $F(x^2) = F(x)\sigma(x) + \tau(x)d(x), \text{ for}$ all $x \in R$, [14].

An additive mapping $d: R \rightarrow R$ is called left (σ, τ) -derivation if $d(xy) = \sigma(x)d(y) + \tau(y)d(x)$, for all $x, y \in R$, [13]. Clearly, every left (1,1)-derivation is a left derivation on R. Shaheen [15], introduced the concept of generalized left derivation as an additive mapping $F: R \to R$, if there exist a left derivation $d: R \rightarrow R$ such that F(xy) = xF(y) + yd(x),for all in [16], $x, y \in R$. The author introduced the concept of generalized left (σ, τ) -derivation to be an additive mapping $F: R \rightarrow R$ such there exists a left (σ, τ) that -derivation $d: R \rightarrow R$ such that

 $F(xy) = \sigma(x)F(y) + \tau(y)d(x)$, for all $x, y \in R$. In the year 2003, S. M. A. Zaidi, M. Ashraf and S. Ali [13] proved that every Jordan left (σ, σ) -derivation on a Jordan ideal U of a 2-torsion free prime ring is a left (σ, σ) -derivation on U.

In section 3, we discuss the application of theory of σ -centralizers and extend the last result

On Left σ -Centralizers of Jordan Ideals And Generalized Jordan Left (σ , τ)-Derivations of Prime Rings

by introducing the concept of generalized Jordan left (σ, τ) -derivation. Throughout this paper consider σ is an automorphism of R.

2. Prelimineries

Now we will introduce the definition of generalized Jordan left (σ, τ) - derivation and some basic results which extensively to prove our theorems.

2.1 Definition:

Let *S* be a non empty set of *R* An additive mapping $F: R \to R$ is called generalized Jordan left (σ, τ) - derivation on *S* if there exist a Jordan left (σ, τ) -derivation $d: R \to R$ such that $F(xy) = \sigma(x)F(x) + \tau(x)d(x)$, for all $x \in S$.

2.2 Example:

Consider the ring

$$R = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a, b \in Z \right\}, \text{ where } Z$$

denotes the set of integer numbers. Define $F: R \rightarrow R$ by

$$F\left(\begin{bmatrix} a & 0\\ 0 & b \end{bmatrix} = \begin{bmatrix} -a & 0\\ 0 & 0 \end{bmatrix}\right).$$
 Then it is

easy to check F is a generalized Jordan left (σ, τ)- derivation on Rwith endomorphisms

$$\sigma\left(\begin{bmatrix} a & 0\\ 0 & b \end{bmatrix}\right) = \begin{bmatrix} a & 0\\ 0 & b \end{bmatrix} \text{ and }$$
$$\tau\left(\begin{bmatrix} a & 0\\ 0 & b \end{bmatrix}\right) = \begin{bmatrix} 0 & 0\\ 0 & b \end{bmatrix} \text{ since there }$$
exists a Jordan left (σ, τ)

On Left σ -Centralizers of Jordan Ideals And Generalized Jordan Left (σ , τ)-Derivations of Prime Rings

-derivation $d: R \to R$ which is defined by $d \begin{pmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$. Lemma (2.3) and Lemma (2.4) can be

found in [13].

2.3 Lemma:

Let *R* be a 2-torsion free prime ring and *U* a nonzero Jordan ideal of *R*. If aU = 0 or (Ua = 0), then a = 0.

2.4 Lemma:

Let *R* be a 2-torsion free prime ring and *U* a nonzero Jordan ideal of *R*. If aUb = 0, then a = 0 or b = 0.

2.5 Lemma:

Let *R* be a 2-torsion free ring, *U* a Jordan ideal of *R* and $G: R \rightarrow R$ an additive mapping defined by $G(ur + ru) = G(u)\sigma(r) + G(r)\sigma(u)$, for all $u \in U, r \in R$. Then for every $u \in U, r \in R$, the following statements are hold: (i) $G(uru) = G(u)\sigma(r)\sigma(u)$.

(ii) $G(urv + vru) = G(u)\sigma(r)\sigma(v)$

 $+G(v)\sigma(r)\sigma(u)$ (iii) $(G(u^{2}r) - G(u^{2})\sigma(r))\sigma[u^{2}, r] = 0.$

Proof:

(i) Replace r by 2ur + r2u. Then G(u(2ur + r2u) + (2ur + r2u)u) $= G(u)\sigma(2ur + r2u)$ $+ G(2ur + r2u)\sigma(u)$ $= 2(G(u)\sigma(u)\sigma(r) + G(u)\sigma(r)\sigma(u))$

 $+G(u)\sigma(r)\sigma(u)+G(r)\sigma(u)\sigma(u)$

(1) On the other hand, G(u(2ur + r2u) + (2ur + r2u)u) $= G(2u^{2}r + r2u^{2}) + 4G(uru)$ $= (G(u^{2})\sigma(r) + G(r)\sigma(u^{2})) + 4G(uru)$ $= 2(G(u)\sigma(u)\sigma(r) + G(r)\sigma(u)\sigma(u))$

+4G(uru)(2)By comparing equation(1) and equation(2) and since R is 2-torsion free, we get $G(uru) = G(u)\sigma(r)\sigma(u)$. (ii) If we replace u by u + v in (i), we get the required result. (iii) Let $u, v \in U$, such that $uv \in U$. Let W = G(uvuv + uvvu). Then by (ii), we get $W = G(u)\sigma(v)\sigma(uv) + G(uv)\sigma(v)\sigma(u)$ (3)On the other hand, $W = G(uv)^2 + G(uv^2u)$ $= G(uv)\sigma(uv) + G(u)\sigma(v^2)\sigma(u)$ (4)By comparing equation (3) and equation (4), we get

 $0 = (G(uv) - G(u)\sigma(v))\sigma(uv) - (G(uv) - G(u)\sigma(v))\sigma(vu)$

$$= (G(uv) - G(u)\sigma(v))\sigma[u,v]$$

For any $u \in U$ and $r \in R$, the element v = ur + ru satisfies the criterion $uv \in U$, hence by above, we get

$$0 = (G(u(ur + ru))) - G(u)\sigma(ur + ru))\sigma[u, ur + ru]$$
$$= (G(u^{2}r) + G(uru) - G(u)\sigma(u)\sigma(r)) - G(u)\sigma(r)\sigma(u))\sigma[u^{2}, r]$$

 $= (G(u^{2}r) - G(u)\sigma(u)\sigma(r))\sigma[u^{2}, r]$ $= (G(u^2r) - G(u^2)\sigma(r))\sigma[u^2, r]$ Note that Lemma (2.5) holds in case σ is just endomorphism of the ring R. 2.6 Lemma: Let R be a 2-torsion free prime ring and $G(ur + ru) = G(u)\sigma(r)$ $+G(r)\sigma(u)$, for all $u \in U, r \in R$. If $u \in U$ such that $u \in Z(R)$, then $G(ur) - G(u)\sigma(r) = 0$ **Proof:** Let W = G(vur + urv) $= G(v)\sigma(ur) + G(ur)\sigma(v)$ (5)On the other hand since $u \in Z(R)$, then W = G(vur + urv) $= G(u)\sigma(r)\sigma(v) + G(v)\sigma(r)\sigma(u)$ (6)Compare equation (5) and equation (6) to get $(G(ur) - G(u)\sigma(r))\sigma(v) = 0$, for all $u, v \in U, r \in R$, i.e. $\sigma^{-1}(G(ur) - G(u)\sigma(r))U = 0.$ By Lemma (2.1), we get G(ur) $-G(u)\sigma(r)=0$.

2.7 Lemma:

Let *R* be a 2-torsion free prime ring, *U* be a Jordan ideal of *R* and $G(ur + ru) = G(u)\sigma(r) + G(r)\sigma(u)$, for all $u \in U, r \in R$. Then $G(u^2r)$ $-G(u^2)\sigma(r) = 0$. **Proof:**

Let $u, v \in U$ such that $2uv \in U$ and $2vu \in U$. On Left σ -Centralizers of Jordan Ideals And Generalized Jordan Left (σ , τ)-Derivations of Prime Rings

Let
$$W = G(uvsvu + vusuv)$$
.
By Lemma ((2.5),(ii)), we get
 $W = G(uv)\sigma(s)\sigma(vu)$
 $+ G(vu)\sigma(s)\sigma(uv)$
(7)
On the other hand by Lemma
(2.3,(ii)), we get
 $W = G(u(vsv)u) + G(v(usu)v)$
 $= G(u)\sigma(vsv)\sigma(u) + G(v)\sigma(usu)\sigma(v)$
 $= G(u)\sigma(v)\sigma(s)\sigma(v)\sigma(u)$
 $+ G(v)\sigma(u)\sigma(s)\sigma(u)\sigma(v)$
(8)
By comparing equation (7) and
equation (8), we get
 $0 = (G(uv) - G(u)\sigma(v))\sigma(s)\sigma(uv)$
 $= (G(uv) - G(u)\sigma(v))\sigma(s)\sigma[u,v]$
For any $u \in U, s \in R$, the element
 $v = ur + ru$ satisfies the criterion
 $uv \in U$ and $vu \in U$, hence by above
we get
 $0 = (G(u(ur + ru)))$
 $- G(u)\sigma(ur + ru))\sigma(s)\sigma[u,ur + ru]$
 $= (G(u^2r) - G(u^2)\sigma(r))R\sigma[u^2, r]$
Since R is prime, either
 $G(u^2r) - G(u^2)\sigma(r) = 0$ or $\sigma[u^2, r]$
 $= 0$.
If $\sigma[u^2, r] = 0$, then $u^2 \in Z(R)$. By
Lemma (2.6), we get
 $G(u^2r) - G(u^2)\sigma(r) = 0$.

3.1 Theorem:

Let *R* be a 2-torsion free prime ring, be a *U* Jordan ideal of *R* and *G* be an additive mapping from *R* into itself satisfying the condition $G(ur + ru) = G(u)\sigma(r) + G(r)\sigma(u)$, for all $u \in U, r \in R$. Then $G(ur) = G(u)\sigma(r)$, for all $u \in U$, $r \in R$. **Proof:**

Let W = G(uur + uru)

$$= G(u)\sigma(ur) + G(ur)\sigma(u)$$

On the other hand,

$$W = G(u^2r + uru)$$

(9)

$$= G(u^{2})\sigma(r) + G(u)\sigma(r)\sigma(u)$$

$$=G(u)\sigma(u)\sigma(r)+G(u)\sigma(r)\sigma(u)$$
(10)

By comparing equation (9) and equation (10), we get

 $(G(ur) - G(u)\sigma(r))\sigma(u) = 0$, for

all
$$u \in U, r \in R$$
. (11)

Replace u by u + v in equation (11), we get

 $(G(ur) - G(u)\sigma(r))\sigma(v)$

$$+(G(vr)-G(v)\sigma(r))\sigma(u)=0$$

Replace v by v^2 in the last equation and by using Lemma (3), we get $(G(ur) - G(u)\sigma(r))\sigma(v^2) = 0$,

for all
$$u, v \in U, r \in R$$
. (12)

Now linearize equation (12) on v and use equation (12) and equation (11) to get

$$(G(ur) - G(u)\sigma(r))\sigma(v)\sigma(u) = 0,$$

for all $u, v \in U, r \in R$ and this

On Left σ -Centralizers of Jordan Ideals And Generalized Jordan Left (σ , τ)-Derivations of Prime Rings

implies that

$$\sigma^{-1}(G(ur) - G(u)\sigma(r))Uu = 0$$
.
By Lemma (2.4), either
 $G(ur) - G(u)\sigma(r) = 0$ or $u = 0$.
If $u = 0$, for all $u \in U$ then $U = 0$
and this a contradiction. Therefore,
 $G(ur) - G(u)\sigma(r) = 0$, for all
 $u \in U, r \in R$.

As a consequence of Theorem (3.1) we get the following Corollaries: **3.2 Corollary**:

Let R be a 2-torsion free prime ring, be a U Jordan ideal of R and G be a left Jordan σ -centralizer on U. Then G is a left σ -centralizer on U.

In Corollary (3.2), if $\sigma = 1$, 1 where is the identity mapping, we get the following:

3.3 Corollary:

Let R be a 2-torsion free prime ring, be a U Jordan ideal of R and G be a left Jordan centralizer on U. Then G is a left centralizer on U.

3.4 Corollary:

Let R be a 2-torsion free prime ring. Then every left Jordan centralizer on R is a left centralizer on R.

Zalar in [9], proved that Corollary (3.4) in case is *R* semiprime ring.

If U is a Jordan ideal and a subring of R and $G: R \to R$ is a left σ -centralizer on U into R, then an easy computation ginen that $G(xyz) = G(x)\sigma(y)\sigma(z)$, for all $x, y, z \in U$. A natural question is to ask wether the converse is also true. We prove the following theorem which contains the answer on this question

3.5 Theorem:

Let R be a 2-torsion free semiprime ring, be a U Jordan ideal of R. If $G: R \rightarrow R$ is an additive mapping such that $G(uru) = G(u)\sigma(r)\sigma(u)$, for all $u \in U, r \in R$, then G is a left σ -centralizer on U. **Proof**: By the hypothesis, we get $G(uru) = G(u)\sigma(r)\sigma(u)$, for all $u \in U, r \in R$. (13)Replacing u by u + v in equation (13), we get G((u+v)r(u+v)) $= G(u)\sigma(r)\sigma(u) + G(u)\sigma(r)\sigma(v)$ $+G(v)\sigma(r)\sigma(u)+G(v)\sigma(r)\sigma(v)$ (14)On the other hand, G((u+v)r(u+v))= G(uru) + G(urv + vru) + G(vrv)(15)Combining equation (14)and equation (15), we get $G(urv + vru) = G(u)\sigma(r)\sigma(v)$ $+G(v)\sigma(r)\sigma(u)$, for all $u, v \in U$ $r \in R$. (16)Replace v by $2u^2$ in equation (16), we get $G(uru^2 + u^2ru)$ $= 2(G(u)\sigma(r)\sigma(u^{2}) + G(u^{2})\sigma(r)\sigma(u))$, for all $u \in U, r \in R$. (17)Put r = ur + ru in equation (13) and using equation (13), we get $2G(uru^2 + u^2ru)$ = 2(G(u(ru)u + u(ur)u)) $= 2(G(u)\sigma(ru)\sigma(u))$ $+G(u)\sigma(ur)\sigma(u)$ (18)

On Left σ -Centralizers of Jordan Ideals And Generalized Jordan Left (σ , τ)-Derivations of Prime Rings

By comparing equation (17) and equation (18), and since R is a 2 -torsion free we get $(G(u^2) - G(u)\sigma(u))\sigma(r)\sigma(u) = 0,$ for all $u \in U, r \in R$. (19)Now we set $G(u^2) - G(u)\sigma(u)$ = A(u), for all $u \in U$. Then equation (19) reduces to $A(u)\sigma(r)\sigma(u) = 0$, for all $u \in U$, $r \in R$. (20)Since is σ onto, equation (20) implies that $A(u)s\sigma(u) = 0$, for all $u \in U$ $s \in R$. (21)Replacing s by $\sigma(u)zA(u)$ in equation (21), equation (21) gives that $A(u)\sigma(u)zA(u)\sigma(u) = 0$, for all $u \in U, z \in R$. (22)Since R is semiprime, then $A(u)\sigma(u) = 0$, for all $u \in U$. (23)Replace u by u + v in equation (23), we get $A(u+v)\sigma(u) + A(u+v)\sigma(v) = 0,$ for all $u \in U$. (24)Since A(u+v) = B(u,v) + A(u) + A(v), for all $u, v \in U$. (25)Where $B(u,v) = G(uv + vu) - G(u)\sigma(v)$ $-G(v)\sigma(u)$ In view of equation (25), expression (24) implies that $A(u)\sigma(v) + B(u,v)\sigma(u) + A(v)\sigma(u)$ $+ B(u,v)\sigma(v) = 0$, for all $u, v \in U$. (26)

Replace u by -u in the last equation, to get $A(u)\sigma(v) + B(u,v)\sigma(u) - A(v)\sigma(u)$ $-B(u,v)\sigma(v) = 0$, for all $u, v \in U$(27) Adding equation (26) with equation (27) and using the fact that R is a 2 torsion free semiprime ring, we find that $A(u)\sigma(v) + B(u,v)\sigma(u) = 0$, for all $u, v \in U$(28) On right multiplication of equation (28) by A(u), we get $A(u)\sigma(v)A(u) + B(u,v)\sigma(u)A(u) = 0$, for all $u, v \in U$. (29)equation (21), From we get $\sigma(u)A(u)R\sigma(u)A(u) = 0$, for all $u \in U$. Since R semiprime, then is $\sigma(u)A(u) = 0$, for all $u \in U$. (30)On combining equation (29) and

On combining equation (29) and equation (30) and since *R* is semiprime, A(u) = 0, for all $u \in U$, i.e., *G* is a Jordan left σ - centralizer and hence *G* is a left σ - centralizer on by Corollary (3.2).

Now we present some application of the theory of σ -centralizer in rings. The following theorem is a generalization of main theorem of [7].

3.6 Theorem:

Let R be a 2-torsion free prime ring, U be a Jordan ideal and a subring of R. If F is a generalized Jordan left (σ, σ) -derivation on U, On Left σ -Centralizers of Jordan Ideals And Generalized Jordan Left (σ , τ)-Derivations of Prime Rings

then F is a generalized left (σ, σ) -derivation on U.

Proof:

Since F is a generalized Jordan left (σ, σ) -derivation on U, then there exists a Jordan left (σ, σ) -derivation d on U such that

 $F(u^2) = \sigma(u)F(u) + \sigma(u)d(u), \text{ for}$ all $u \in U$.

Now we write G = F - d. Then, we find that

$$G(u^{2}) = (F - d)(u^{2}) = F(u^{2}) - d(u^{2})$$

= $\sigma(u)F(u) + \sigma(u)d(u) - 2\sigma(u)d(u)$
= $\sigma(u)(F(u) - d(u))$
= $\sigma(u)G(u)$

That is, G is a Jordan left σ -centralizer on U. Thus by Corollary (3.2), G is a left σ -centralizer on U.

By [13], d is a left (σ , σ)-derivation on U. Therefore, F = G + d and F(uv) = G(uv) + d(uv) $= \sigma(u)G(v) + \sigma(u)d(v) + \sigma(v)d(u)$ $= \sigma(u)(F(y) - d(y)) + \sigma(u)d(v)$ $+ \sigma(v)d(u)$

$$= \sigma(u)F(v) + \sigma(v)d(u)$$

Hence F is a generalized left (σ, σ) -derivation on U.

In Theorem (3.6), if F = d where d is a Jordan left (σ, σ) -derivation associated with F, we get the main theorem of [13].

3.7 Corollary:

Let R be a 2-torsion free prime ring, U be a Jordan ideal and a subring of R. If d is a Jordan left (σ, σ) -derivation on U, then d is a left (σ, σ) -derivation on U.

In Corollary (3.7), if $\sigma = 1$, where 1 is the identity mapping of R, we get **3.8 Corollary**:

Let R be a 2-torsion free prime ring, U be a Jordan ideal and a subring of R. If d is a Jordan left derivation on U, then d is a left derivation on U.

References

- [1] Herstein, I. N. TOPICS IN RING THEORY the University of Chicago Press, Chicago (1965).
- [2] Herstein, I. N., "Jordan derivations of prime rings", Proc. Amer. Math. Soc., 8, 1104-1110 (1997).
- [3] Awater, R., "Lie ideals and Jordan Derivations of Prime Rings", Proc. Amer. Math. Soc., 90(1), 9-14 (1984).
- [4] Bresar, M., " On the distance of the coposition of two derivations to the generalized Derivations", Glasgow Math. J., 33, 89-93(1991).
- [5] Ashraf, M. and Rehman, N., " On generalized derivations in rings", Math. J. Univ., 42,7-9 (2000).
- [6] Ashraf, M., Rehman, N. and Ali, S., "On the ideals and Jordan generalized derivations of prime rings", Indian J. Pure and Appl. Math., 2, 291-294 (2003).
- [7] Ashraf, M. and Rehman, N., "On Lie ideals and Jordan left derivations of prime rings", Archivum Mathematicum (Brno), 36, 201-206 (2000).

On Left σ -Centralizers of Jordan Ideals And Generalized Jordan Left (σ , τ)-Derivations of Prime Rings

- [8] Ali, S. and Haetinger, C., "Jordan α -centralizer in rings and some applications", Bol. Soc. Paran. Math., 26,71-80(2008).
- [9] Zalar, B., " On centralizers of semiprime rings", Comment. Math. Carolinae, 32, 609-614 (1991).
- [10] Albas, E., " On τ -centralizers of semiprime rings", Siberian Mathematical Jornal,48(2), 191-196 (2007).
- [11] Vukman, J., "Centralizers of semiprime rings", Comment. Math. Carolinae, 42(2), 237-245(2001).
- [12] Molnar, L., "On centralizers of an H^* algebra", Publ. Math. Debrecen, 46(1-2), 89-95(1995).
- [13] Zaidi, S. M. A., Ashraf, M. and Ali, S., "On Jordan ideals and left (θ, θ) derivations in prime rings", IJMMS, 37, 1957-1964 (2003).
- [14] Faraj, A. K., "On higher derivations and higher homomorphisms of prime rings", Ph. D. Thesis, Applied Sciences Department, University of Technology (2006).
- [15] Shaheen, R. C., "Generalized Jordan left derivations on some rings", M. SC.Thesis, Department of Mathematics, College of Education, Al- Mustansiriyah University (2005).
- [16] Faraj, A. K., "On generalized (θ, ϕ) -reverse derivations of prime rings", (submitted).