Fully \overline{P} - P – Stable Rings

Areej M. Abduldaim

Received on:17/6/2009
Accepted on:5/11/2009

Abstract

M.S.Abbas [1] introduced and studied the concept of fully stable R-modules and called a ring R is fully stable (pseudo - stable) if it is fully stable (pseudo - stable) R-module. And A.M.Abdul-Daim [2] introduced and studied the concept of fully \overline{P} - stable rings as a generalization of fully stable rings.

The purpose of this paper is to generalize the concept of fully pseudo – stable rings to fully \overline{P} – pseudo - stable rings. Some properties and characterizations of fully \overline{P} – pseudo – stable rings are obtained. A condition is given such that a fully \overline{P} – pseudo – stable ring is fully \overline{P} – stable.

Introduction

In this paper , R represents a commutative ring with identity and all modules are left unitary.

M.S.Abbas [1] was introduced the concept of a fully stable R-module and then introduced the concept of a fully pseudo-stable (fully p-stable) module as a generalization of a fully stable module.

(1) Definition

An R-module M is said to be fully stable module, if for each R-homomorphism $\alpha:N \rightarrow M$ of any submodule N of M into M, we have $\alpha (N) \subseteq N$. A ring R is fully stable if it is a fully stable R- module.

(2) Definition

An R-module M is said to be fully p - stable if for each R-
monomorphism \(\alpha : N \to M \) of any submodule \(N \) of \(M \) into \(M \), we have \(\alpha (N) \subseteq N \). A ring \(R \) is fully pseudo stable (fully \(p \)-stable) if and only if it is a fully \(p \)-stable \(R \)-module [1].

In [2] the concept of a \(\pi \)-stable ring is investigated which includes the class of fully stable rings and that of \(\pi \)-regular rings.

(3) Definition
A ring \(R \) is called fully \(\pi \)-stable if and only if for each element of \(x \) in \(R \), there exists a positive integer \(n \) such that for every \(R \)-homomorphism \(\alpha : Rx^n \to R \) we have \(\alpha (Rx^n) \subseteq Rx^n \).

In an analogous manner, we introduce now a class of rings larger than the class of fully \(\pi \)-stable rings.

(4) Definition
Let \(R \) be any ring. An element \(x \) in \(R \) is called \(\pi \)-pseudo-stable (abbreviated \(\pi \)-p-stable) if there exists a positive integer \(n \) such that for every \(R \)-homomorphism \(\alpha : Rx^n \to R \) we have \(\alpha (Rx^n) \subseteq Rx^n \).

A ring \(R \) is called fully \(\pi \)-pseudo-stable if and only if every element in \(R \) is \(\pi \)-pseudo-stable.

It is clear that every \(\pi \)-stable element of an arbitrary ring is \(\pi \)-p-stable. Hence every fully \(\pi \)-stable rings is fully \(\pi \)-p-stable, we conjecture the converse is not true, but we recall that a non zero \(R \)-module \(M \) is said to be uniform if each non zero submodules of \(M \) has non zero intersection with every non zero submodule of \(M \). A ring \(R \) is uniform if it is uniform \(R \)-module, then we have the following:

(5) Proposition
Every fully \(\pi \)-p-stable uniform ring is fully \(\pi \)-stable ring.

Proof
Let \(R \) be a fully \(\pi \)-p-stable uniform ring. For any element \(x \) in \(R \) there exists a positive integer \(n \) and for every \(R \)-homomorphism \(f : Rx^n \to R \). If \(\ker(f) = (0) \), there is nothing to prove. Otherwise, let \(y \in \ker(f) \cap \ker(I_{Rx^n} + f) \). Then \(f(y) = 0 \) and \((I_{Rx^n} + f)(y) = 0 \). Now, \(y = y + f(y) = (I_{Rx^n} + f)(y) = 0 \). Thus \(\ker(f) \cap \ker(I_{Rx^n} + f) = (0) \), but \(R \) is uniform, hence \(\ker(I_{Rx^n} + f) = (0) \), that is, \((I_{Rx^n} + f) : Rx^n \to R \) is an \(R \)-monomorphism. Since \(R \) fully \(\pi \)-p-stable, then \((I_{Rx^n} + f)(Rx^n) \subseteq Rx^n \), hence \(f(Rx^n) \subseteq Rx^n \).

W. D. Weakly [3] was introduced the concept of terse module. An \(R \)-module is said to be terse iff distinct submodules are not isomorphic. He proved that for an \(R \)-module to be terse, it is enough to have the property that distinct cyclic submodules are not isomorphic.

A ring \(R \) is terse if and only if it is terse \(R \)-module. The following is a generalization for terse rings.

(6) Definition
A ring \(R \) is called \(\pi \)-terse iff for any two elements \(x \) and \(y \) in \(R \) there exists a positive integer \(n \) such that if \(Rx^n \neq Ry \) implies \(Rx^n \nsubseteq Ry \).

In the following proposition we show that the concepts of a \(\pi \) - terseness and full \(\pi \)-p-stability are coincide.

(7) Proposition
A ring \(R \) is \(\pi \)-terse if and only if it is fully \(\pi \)-p-stable ring.
Proof

Suppose that R is \(\pi\)–terse ring and there exists an element \(x\) in \(R\) and \(R\)-monomorphism \(f:R_x^n \rightarrow R\) such that \(f(R_x^n) \subset Rx^n\) for each positive integer \(n\), then \(Rx^n\) and \(f(R_x^n) = R_{f(x)}\) are two distinct ideals of \(R\). Since \(R\) is \(\pi\)–terse ring, then \(R_{f(x)} = f(R_x^n)\) is not isomorphic to \(Rx^n\) which is not true. Hence \(R\) is fully \(\pi\)–\(p\)-stable ring.

Conversely, suppose that \(R\) is a fully \(\pi\)–\(p\)-stable ring and \(R\) has two elements \(x\) and \(y\) such that \(Rx_x^n \subseteq Ry\) but \(Rx_x^n \neq Ry\) for each positive integer \(t\). We can assume that \(Rx_x^n \subset Ne\). Then there exists a non–zero element \(z\) in \(Rx_x^n\) which is not in \(Ry\). Let \(f:Rx_x^n \rightarrow Ry\) be an isomorphism, consider the following two \(R\)-monomorphisms, \(I_{Rx_x}^n \circ f : Rx_x^n \rightarrow R\) and \(I_{Rx_x}^n \circ f^1: Ry \rightarrow R\), since \(R\) is fully \(\pi\)–\(p\)-stable ring, then \((I_{Rx_x}^n \circ f)(Rx_x^n) \subseteq Rx_x^n\) and \((I_{Rx_x}^n \circ f^1)(Ry) \subseteq Ry\). Now, \(z = (I_{Rx_x}^n \circ f^1 \circ I_{Rx_x}^n \circ f)_z \in Ry\) which is a contradiction.

Proposition (7) together with proposition (5) give:

(8)Corollary

Let \(R\) be a uniform ring and \(\pi\)–terse ring, then \(R\) is fully \(\pi\)-stable ring.

From proposition (7) we see that every fully \(\pi\)-stable ring, is \(\pi\)–terse, hence we have the following proposition:

(9) Proposition

Let \(R\) be a fully \(\pi\)–stable ring and let \(x\) and \(y\) be any two elements in \(R\) with \(Ry\) a direct summand of \(R\) then there exists a positive integer \(n\) such that if \(Rx^n\) is isomorphic to \(Ry\), then \(Rx^n\) is direct summand of \(R\).

Proof

Since \(R\) is fully \(\pi\)–stable ring, then \(R\) is \(\pi\)–terse, so if \(Rx^n \cong Ry\), then \(Rx^n = Ry\), which implies that \(Ry\) is a direct summand of \(R\).

Next, we will characterize fully \(\pi\)–stable rings among fully \(\pi\)-\(p\)-stable rings. However, we shall need the following lemma (for its proof, see[1]).

(10) Lemma

Let \(M\) be an \(R\)-module and \(I\) an ideal of \(R\). Then \(\text{ann}_M(I) \cong \text{Hom}_R(R/IM\).

(11)Theorem

Let \(R\) be a ring. Then the following statements are equivalent:

1. \(R\) is a fully \(\pi\)–stable ring.
2. \(R\) is a \(\pi\)–terse ring and for every element \(x\) in \(R\) there exists a positive integer \(n\) such that \(Rx^n \cong \text{Hom}_R(Rx^n, R)\).

Proof

(1) implies (2). Assume that \(R\) is a fully \(\pi\)-stable ring, then \(R\) is \(\pi\)-terse. Since \(R\) is fully \(\pi\)-stable ring, then for every element \(x\) in \(R\) there exists a positive integer \(n\) such that \(Rx^n = \text{ann}(\text{ann}(Rx^n))\) [2]. By Lemma (10) \(\text{ann}(\text{ann}(Rx^n)) \cong \text{Hom}_R(R/\text{ann}(Rx^n), R) = \text{Hom}(Rx^n, R)\) which implies that \(Rx^n \cong \text{Hom}(Rx^n, R)\).

(2) implies (1). Suppose that \(R\) is \(\pi\)–terse and for every element \(x\) in \(R\) there exists a positive integer \(n\) such that \(Rx^n \cong \text{Hom}(Rx^n, R)\). By Lemma (10) \(\text{ann}(\text{ann}(Rx^n)) \cong \text{Hom}(R/\text{ann}(Rx^n), R) \cong \text{Hom}(Rx^n, R)\), then \(Rx^n \cong \text{ann}(\text{ann}(Rx^n))\) is \(\pi\)-terse of \(R\) implies that \(Rx^n = \text{ann}(\text{ann}(Rx^n))\). Hence \(R\) is fully \(\pi\)-stable ring.
The following corollary follows from proposition (7) which gives a characterization of fully π-stable rings among fully $\pi-p$-stable rings.

Corollary

The following statements are equivalent for a ring R.

1) R is a fully π-stable ring.
2) R is a fully $\pi-p$-stable ring and for every element x in R there exists a positive integer n such that $Rx^n \cong \text{Hom}(Rx^n, R)$.

Discussion

From all the above we have the following:

1) Every fully π-stable ring is fully $\pi-p$-stable.
2) Every fully $\pi-p$-stable uniform ring is fully π-stable ring.

3) A ring R is π-terse if and only if it is fully $\pi-p$-stable.
4) A ring R is fully π-stable ring if and only if R is fully $\pi-p$-stable ring and for every element x in R there exists a positive integer n such that $Rx^n \cong \text{Hom}_R(Rx^n, R)$.

References