
 Eng. & Tech. Journal ,Vol.28 , No.4,2010  

*Laser Engineering Department, Ministry of Seinces and Technology/ Baghdad
** Applied Sciences Department, University of Technology/ Baghdad
***Laser & Optoelectronics Engineering Department ,University of Technology/ Baghdad

Analytic Technique For Active Mode-Locked Fiber Lasers  

Dr. Bushra.R.Mahdi*, Dr.Adawiya.J.Haider** 
& Dr. Mohammed.S.Mehde*** 

Received on: 25/3/2009 
Accepted on: 5/11/2009 

  Abstract
In this work, Aِmplitude modulation mode-locked fiber laser is 

studied,by using Ytterbium Doped Fiber Laser, single mode fiber, 
operating with 1055 nm wavelength with 976 nm optical pump and AM 
Mode-Locked by optical modulators. A grating pair is used to compensate 
the normal dispersion. The effect of both normal and anomalous dispersion 
regimes on output pulses are investigated. Master equation of the Mode-
locking fiber laser is introduced .Pulse shapes for both dispersion regimes  
are assumed after modifying (Ginzburg-Landu equation) GLE which is 
essentially Generalized Nonlinear Schrödinger equation GNLSE and by 
applying the moment method ,a set of  five rate equations for pulse energy 
,pulse width ,frequency shift ,temporally shift and chirp ,which solutions 
described the pulse from round trip to the next and how they approach to 
steady state values. To solve these equations numerically fourth order, 
Runge-Kutta method is performed through Mat-Lab 7.0 computer program. 
Result shows that, the output pulse width from the AM mode-Locked 
equals to τ=0.8ps in anomalous and τ=1ps in normal regimes. The study 
shows the stability of working in anomalous dispersion regime is better 
than normal regime. 

Keywords: Fiber Laser, Ytterbium Doped Fiber, AM Mode Locking, Moment 
Method, Pulse Chirp, Pulse Energy, Pulse Width. 

 تقنيةالتحليل الرياضي لقفل النمط السعوي لليزر اليف البصري

 الخلاصة
للتضمین السعوي للیزر اللیف البصري المش اب بعنص ر في ھدا البحث تم دراسة قفل النمط       

ن انو 1055بط ول م وجي   تم دراسة ھذه النماذج باستعمال لیف احادي ال نمط ویعم ل   . الیوتربیومز
اس  تعملت تقنی  ة  زوج م  ن المح  ززات لمعادل  ة. ن  انومتر  976مت  ر مش  وب لتربی  وم ویض  خ بلی  زر 

تم تقدیم معادلة لیزر اللیف لقفل النمط الرئیسة وباستخدام إشكال النبضة المقترحةو . التشتت العادي
لاخطی ة العام ة وباس تعمالوالت ي ھ ي أساس ا معادل ة ش رودنكر ال     ) كایزن بی رغ (بعد تعدیل معادلة 

الانح   راف ,الانح   راف الت   رددي,طریق   ة الع   زم ت   م تق   دیم خم   س مع   ادلات تص   ف طاق   ة النبض   ة  
. الزقزق  ة وع  رض النبض  ة تص  ف ھ ذه المع  ادلات نش  أة مع  املات النبض  ة خ  لال ل دورة   ,الزمن ي 

دار وتح  ل ھ  ذه المع  ادلات رقمی  ا باس  تخدام طریق  ة ری  نج كت  ا وباس  تعمال برن  امج م  اث لاب الإص      
بیك و ثانی ة بالنظ ام 0.8بیك و ثانی ة ف ي ال نمط الاعتی ادي و      1= حصلنا على عرض النبضة .السابع

أظھرت الدراسة استقراریة العمل عند نظام التشتت الشاذ وان تأثیر الانضغاط ھو أفضل من . الشاذ
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طیة لك لا  النظام العادي بسبب التأثیرات الممزوجة لكل من تشتت سرعة المجموعة السالب واللاخ
  نظامي

 
 Introduction 

Ultra-short pulses are very 
important research field. Today short 
pulsed laser systems find numerous 
applications in areas of fundamental 
research as well as for medical and 
industrial applications, depending on 
the wavelength and pulse width. As 
early as 1970, an analytic theory was 
developed for determining pulse 
parameters and shape in actively 
mode-locked solid-state lasers [1]. It 
is possible to include the effect of 
dispersion on the pulse shape and the 
nonlinear effects within the cavity 
become important, analytic 
investigations begin more accurate. 
This is frequently the case in fiber 
lasers where both fiber dispersion 
and nonlinearity are important. 
              In this work, we used tool 
for investigating mode-locked lasers 
by essentially treating the mode-
locked pulses as particles with a 
fixed analytic shape. This approach 
allows us to simplify the governing 
nonlinear partial differential 
equation, often called the master 
equation of mode-locking, into a set 
of coupled ordinary differential 
equations. The resulting equations 
are similar to the rate equations 
commonly used to describe 
continuously operating lasers. They 
can be solved quickly using standard 
techniques and have the added 
benefit that under steady-state 
conditions they reduce to algebraic 
equations describing pulse energy, 
width, and chirp. These algebraic 
equations indicate the trade-offs 
associated with the different laser 
parameters and overcome any issues 

associated with computation time. 
Our approach represents an 
application of the moment method 
[2], a technique used extensively 
within the field of 
telecommunications [3, 4], to the 
case of a mode-locked laser. 
Pulse shape is invariably close to 
Gaussian or hyperbolic secant, 
depending on the type of mode-
locking employed, the cavity 
dispersion (normal or. anomalous), 
and the strength of nonlinearities. 
This observation is at the root of our 
approach since the moment method 
requires a knowledge of the pulse 
shape. 
 
2. The master equation of mode-
locking 

If the dispersive and 
nonlinear effects are relatively weak 
over a single round trip, the temporal 
shape and width of the pulse change 
little during this period (assuming 
the mode-locker’s effect on the field 
is weak and discrete losses are 
minimal). Although an approximate 
treatment, it is fair to model such a 
system by the master equation of 
mode-locking [5] obtained by 
averaging over the round-trip cavity 
length LR. This equation takes the 
form [5, 6] 

 

A         

…..(1)  
   where T = z/Vg, Vg is the group 
velocity, and A(T, t) is the slowly 
varying envelope of the electric 
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field. As in Refs. [5, 7,8,9], we have 
assumed second-order dispersion 
dominates; therefore higher-order 
dispersive effects have been ignored 
in Eq. (1). It is important to note 
there are two time scales in this 
equation; the time t measured in the 
frame of the moving pulse and the 
propagation time T. Since we 
averaged over a single round trip, T 
is measured by the round-trip time 
TR =LR/Vg. It is assumed that the 
time scale associated with the pulse 
is sufficiently smaller than TR so the 
two times are essentially decoupled. 
This treatment is valid for most 
lasers for which TR exceeds 1 ns and 
pulse widths are typically less than 
100 ps. 
where T = z/Vg, Vg is the group 
velocity, and A(T, t) is the slowly 
varying envelope of the electric 
field. As in Refs. [7, 9], we have 
assumed second-order dispersion 
dominates; therefore higher-order 
dispersive effects have been ignored 
in Eq. (1). It is important to note 
there are two time scales in this 
equation; the time t measured in the 
frame of the moving pulse and the 
propagation time T. Since we 
averaged over a single round trip, T 
is measured in terms of the round-
trip time TR =LR/Vg. It is assumed 
that the time scale associated with 
the pulse is sufficiently smaller than 
TR so the two times are essentially 
decoupled. This treatment is valid 
for most lasers for which TR exceeds 
1 ns and pulse widths are typically 
less than 100 ps. 
            In rare-earth-doped fibers, 
the gain medium responds on a time 
scale much slower than the round-
trip time, and the saturated gain may 
be approximated by[7]  
 

= (1+ / )   Where,  

   represents  the saturation 

power of the gain medium ,    the 
average small-signal gain, and,  

the average power over one 
pulse slot of duration Tm, which 
could be calculated by this 
equation:[7] 
 

 

….(2)                                                                   
 
In Eq. (2) The term   , 
represents the slowly varying 
envelope of the electric field   . The 
pulse slot is calculated by this 
equation: = 1/ = TR/N   Where  

  is the mode-locked frequency, 

 is the modulation frequency. N 
is a harmonic at which the laser will 
mode locked ( N ).  TR  , is the 
time of one roundtrip. The overbar in 
Eq. (1) means the averaged value of 
the parameter over a round trip. 
More specifically,  represents the 
averaged second-order dispersion of 
the cavity elements, while  takes 
into account the averaged nonlinear 
parameter and  represents the 
averaged losses. The finite gain 
bandwidth is assumed to have a 
parabolic filtering effect with a 
spectral full width at half maximum 
(FWHM) given by ∆w = 2/T2. 
              In the absence of the mode-
locker, Eq. (1) reduces to the well-
known Ginzberg–Landau equation, 
which supports a shape-preserving 
solution in the anomalous-dispersion 
regime known as the autosoliton  [6] 
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A(T, t) = a[sech(t/ τ)]1+iq exp[iφ 
(T)]                                       .... (3) 
                                                                                                                                    

Where the pulse parameters 
a, τ, q, and φ(T) are determined by 
the parameters appearing in Eq. (1). 
In the absence of a mode-locker, a 
stable pulse will neither form nor 
survive multiple round trips in the 
cavity. However, the active fiber will 
try to impose the autosoliton shape 
on any pulse circulating in such a 
laser.The pulse shortening in AM 
mode-locked lasers by using of 
dispersive and nonlinear elements 
[5]. In this work we assume that the 
laser is mode-locked with the 
autosoliton shape; we then seek to 
include the effects of the mode-
locker on the pulse energy, width, 
and chirp. To extend our analysis to 
the normal-dispersion regime, we 
also consider a chirped Gaussian 
pulse 
 
A(T, t) = a[exp(− t2/2τ2)1+iq exp[i 
φ(T)]                                    …..(4) 
                                                       
The moment method 

In an effort to study the 
pulse evolution process under the 
influence of Eq. (1), without 
resorting  to full numerical 
simulations, we have employed the 
moment method [2–4]. This 
approach allows us to develop 
ordinary differential equations that 
govern the evolution of the pulse 
parameters. These equations can be 
solved quickly, yielding the 
information of experimental interest. 
All of this, however, is based on a 
knowledge of the exact pulse shape. 
For this reason, one should also 
solve Eq. (1) to ensure that the actual 

pulse shape does not deviate much 
from the assumed pulse shape.  

It is used to convert this 
third order partial differential 
equation to a set of rate equations 
that describe the pulse parameters 
during each roundtrip [2-4].These 
pulse parameters evolution equations 
are obtained by using the so-called 
moment method [4]. 
As seen in Eqs. (3) and (4), a mode-
locked pulse is characterized by four 
parameters, amplitude a, width τ, 
chirp q, and phase φ(T). The 
amplitude can easily be related to 
energy and so we focus on pulse 
energy E, width τ,ζtemporally 
shift,Ωfrequency shift and chirp 
q.These parameters can be defined as 
moments of A(T, t) [4]: 
 
  E(T)=  dt      …(5)                        
     

                                     
…(6) 

                                                    
     …(7)      

                       

..(8)
 

τ2(T)=  ….(9)            

     
Mode-locking by amplitude 

modulation (AM) is one of the oldest 
techniques; we focus on it to 
illustrate our approach by using M(A, 
t) = −∆AM [1− cos (ωmt)]A in Eq. (1), 
where ∆AM is the modulation depth 
experienced by a pulse during a 
single round trip, ωm = 2 π/Tm is the 
modulation frequency (assumed to 
be identical to the repetition rate of 
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the mode-locked pulse train), and the 
average loss of modulator has been 
incorporated into  Assuming that 
the mode-locked pulses are much 
shorter than Tm, we approximate the 
effect of the AM mode-locker as 
M(A, t)=−∆AM ωm

2 t2/2A. Using  Eqs. 
(3) and (4) for the pulse shape we 
obtain the following equations: 
                 

Et
L
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Where the constants Cn (n = 0 to 4) 
are introduced such that they all 
equal 1 for a Gaussian pulse. In the 
case of an autosoliton, C0 = 2/3, C1 
= 1/63, C2 = √2 π/3, C3 = 6/ π2, C4 
= 

2.The )4/exp( 22
0 τω m−=Ψ ,

01 Ψ=Ψ τωm  and 0
2

2 Ψ=Ψ τωm . 
To illustrate pulse dynamics ,we 
solve the five pulse  parameters 
elevation equations   numerically for 
AM type  of  mode locked 
,equations(10-14 ),   MATLAB 7.0 
program   has been  written by using 
fourth-fifth order   Runge-kutta 
method  which uses the function 
ODE-45.This method is used to   
solve ordinary differentional  
equations numerically. 
MATLAB 7.0 program uses the   
constants in  table 1,with the 
following   initial   values  for pulse 
parameters [4] . 
E(0)=1fJ, ζ(0)=0, Ω(0)=0, q(0)=0, 
τ(0)=0.5 ps 
To illustrate pulse dynamics, we 
solve Eqs. (10)–(14) for a fiber laser 
using realistic parameter values. 
More specifically, we use  β2 = ±
0.014 ps2/m,  = 0.012 W−1/m, g0 

= 0.55 m−1, = 0.17 m−1, T2 = 47 
fs/rad, Psat = 12.5 mW, Frep = 10 
GHz, LR = 4 m, TR = 40 ns, and ∆AM 
= 0.3. 
Results and Discussion 
       Fig (1) shows the approach to 
steady state in both the normal and 
anomalous-dispersion regimes for 
change in chrip ,tempril shift and 
frequncy shfit over multiple round 
trips. It reveals that the pulse 
converges quickly in the anomalous 
dispersion regime but takes > 1000 
round trips before converging in the 
normal dispersion regime. Although 
the rate of convergence depends on 
the initial conditions used (E =1 fJ, 
q=0, and τ= 0.5 ps), this type of 
behavior is expected since the 
nonlinear effects are weaker in the 
normal dispersion regime. In the 
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normal-dispersion regime the 
nonlinear effects add to the effect of 
dispersion and broaden the pulse to 
τ= 3 ps, thus reducing its peak 
power and the role played by 
nonlinearity shown in fig (2). In the 
anomalous-dispersion regime the 
interplay between dispersion and 
nonlinearity prolongs the 
convergence. Energy reaches its 
maximum value 2.793 p J 
in about (75) roundtrips as shown in 
Fig (2) (while in normal regime in 
about 100 roundtrips).Then damping 
oscillation is going over thousands of 
roundtrips We also note the initial 
energy used is more than 2700 times 
smaller than the steady state value 
obtained as shown in Fig(2). In fact 
it is obvious that number of 
roundtrip are needed for anomalous 
regime to achieve steady-state is 
RTss=2000  , while for normal 
regime RTss=2500 . From plots of  
pulse width evolution  as in Fig.(2) , 
a broadening in pulse width is 
introduced with maximum width τ 

max =1.8ps in first (50) roundtrips in 
anomalous ( where in normal τ max 
=3ps in first (100) roundtrips ), then 
exhibits damped  oscillation over 
thousands of roundtrips decreasing 
to steady-state value  τ ss=0.8ps  , (in  
normal regime τss =1ps)  where in 
anomalous less number of roundtrips 
than in normal regime is needed 
RTss>2500 .While in anomalous 
regime ,shown the convergence  of 
the pulse width to its steady state 
value. 
The behavior is a consequence of the 
interplay between dispersion and 
nonlinearity. In the anomalous 
regime, the two effects produce 
chirps with opposite signs, which 
partially cancel one another, 
whereas, the chirps add in the 

normal-dispersion regime 
[6,8,9].Table (1) shoes the max and 
min values for pulse parameter. 
Conclusions 
  By applying the moment 
method to the master equation of 
mode-locking, we have derived a set 
of five ordinary differential 
equations for pulse energy, width, 
temporal shift, frequency shift and 
chirp. These equations play the role 
of rate equations for mode-locked 
lasers. Their solution shows that, 
although a steady state is eventually 
reached after sufficiently large 
number of round trips  the approach 
to steady state can be quite different 
depending on whether the average 
cavity dispersion is normal or 
anomalous. 
  The rate equations reduce to 
five algebraic equations in the steady 
state, which were used to study the 
dependence of pulse width and chirp 
on cavity dispersion and 
nonlinearity. We also verified that in 
the absence of dispersive and 
nonlinear effects, our analytic result 
reduces to that obtained in Ref. [1]. 
Although we have focused on the 
case of AM mode locking, our 
approach is quite general and can be 
applied to all actively and passively 
mode-locked lasers. 
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Table (1)  Pulse Parameters Database for both Dispersion Regimes  (Fr=10GHz)AM mode locked 

Normal Regime Anomalous Regime 

PR
A

M
E

T
E

R
 

Max RT 
max Min RT 

min  SS RT 
SS Max RT 

max Min RT 
min  SS RTss 

 
E 
 

2.794 
 p J 100 2.778 

p J 200 0.016 
p J 

2.79 
 p J 2500 2.793 

pJ 50 2.752 
PJ 75 0.041 

P J 
2.785 

p J 2000 

 
ζ 

 

+2   
fs 50 -2fs 300 0 fs 0 >2500 +2.2 

 fs 100 -
1.5fs 200 0.7fs 0.25 2000 

Ω 
 

9 
GHz 300 +2.0 

GHz 500 7 
 GHz 5 >2500 +9  

GHz 125 2 
GHz 200 7 

GHz 
6.5 

GHz 2000 

q +2 175 -2 25 0 0 >2500 +0.9 25 -0.7 100 0.2 0 2000 

τ 3ps 100 0.25ps 175 2.75ps 1ps >2500 1.8ps 50 0.5ps 80 1.3ps 0.8ps 2000 
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Figure (1)Change in chrip ,tempril shift and frequnicy shfit over multiple 
round trips in normal dispersion and anomalous dispersion 
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Figure (2) Change in pulse energy and pulse width over multiple round trips 

in normal dispersion and anomalous dispersion 
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