# Investigation Of Heat Transfer Phenomena And Natural Flow Behavior Around A Heated Square Cylinder Placed In A Cooled Elliptical Enclosure 

Dr. Sattar J. Habeeb*

Received on:11/3/2009
Accepted on:5/11/2009


#### Abstract

In this paper, a numerical study of the effect of a hot square cylinder placed on a cooled elliptical enclosure of a laminar natural convection was carried out. This problem is solved by using the partial differential equations, which are the stream vorticity formulation for the flow and heat transfer in curvilinear coordinates. An elliptical function is used, which makes the coordinate transformation from the physical domain to the computational domain be set up by an analytical expression. About 48 tests are performed for different ratios of the geometry such as, $a / b=1.5,2 ., 3, l / b=0.25,0.5$, and Rayleigh number from $10^{3}$ to $10^{6}$, for two position of the major axis of the elliptical enclosure, horizontal (HEE) and vertical (VEE). The results obtained in the form of velocity vectors, streamlines, isotherms, and Nusselt number. The results show that, the increase of the major axis of the enclosure ( $a / b$ ratio) leads to increase the average Nusselt number and decrease the flow strength for all Rayleigh numbers. Moreover, for $\mathrm{Ra} \leq 10^{4}$, there are a little difference in the results of $N u_{\text {ave }}$ for all $a / b$ and $l / b$ ratios, but if Ra increases, the change in the results is clear and large.


Keywords: natural convection, elliptical enclosure, complex geometry.

> بحث ظاهرة انتقال الحرارة وتصرف في الجريان الطبرد ذا شكي قطول نـو اسطو انة مسخنة مربعة

$$
\begin{aligned}
& \text { الخلاصة }
\end{aligned}
$$

داخل تجويف مبرد ذا شكل قطع ناقص على أنتقال الحر ارة بالحمل الطبيعي. المسألة حُلت بأســتـخدام
المعادلات التفاضلية الجزئية الخاصة بالجريان وأنتقال الحر ارة بصــيغة دالــــة الأنســياب -اللاو اميــة
وبأحداثيات مطابقة الجسم ـ تم أستخدام دالة القطع الناقص لتحويل نظام الاحداثيات الفبزياوي الى نظام
الاحداثيات الحسابي بو اسطة الآشتقاق الرياضي, الار اسة شمت 48 حالة مدروسة لنسب مختلفة مــن
رايلي من $10^{3}$ الى $10^{6}$ لحالنين لموضع المحور الكبير للحيز (القطع الناقص) أفقيا HEE و عموديــا
رقو
ورقم ناسلت. النتائج الرئيسية أظهرت بأن زيادة طول المحور الكيبر للحيز (النسبة b/b a/ النؤدي الى
زيادة بقيمة متوسط رقم ناسلت وأنخفاض بشدة الجريان لكل مدى رقم ر ايلي . بالاضافة الى أن في حالة
رRa $\leq 10^{4}$
رقم رايلي عن ذللك يكون الأختلاف بالنتائج واضح وكبير.

## Introduction

Flow and heat transfer in an elliptical enclosure are of practical important in engineering applications and involved in many industrial systems. Applications of natural convection include solar collector receivers, transmission cable cooling system heat exchangers, nuclear and chemical reactors, aircraft cabin insulation and thermal storage system. In engineering applications, the geometries that arise however are more complicated than a simple enclosure filled with a convective fluid. The geometric configuration of interest is with the presence of bodies' embodied within the enclosure [1, 2].

Roychowdhury et. al. [3] analyzed the natural convective flow and heat transfer features for a heated cylinder kept in a square enclosure with different thermal boundary conditions.

Asan [4] numerically studied two-dimensional natural convection in an annulus between two isothermal concentric square ducts and obtained solutions up to a Rayleigh number of $10^{6}$. The results showed that dimension ratio and Rayleigh number have a profound influence on the temperature and flow fields. Kumar De and Dalal [5] considered the problem of natural convection around a titled heated horizontal square cylinder placed inside an enclosure in the range of $10^{3} \leq \mathrm{Ra} \leq 10^{6}$. Effects of the enclosure geometry have been assessing using three different aspect ratios placing the square cylinder at different heights from the bottom. As
a result, they found that, the uniform wall temperature heating is quantitatively different from the uniform wall heat flux heating. The flow pattern and thermal stratification were modified if the aspect ratio was varied. Overall heat transfer also changes as a function of the aspect ratio.

Kim et. al. [6] investigated numerically the characteristics of two dimensional natural convection problems in a cooled square enclosure with an inner heated circular cylinder. The immersed boundary method was implemented in a second-order accurate finite volume method to simulate the flow and heat transfer over an inner circular cylinder in the Cartesian coordinates. A detailed analysis for the distribution of streamlines, isothermals and Nusselt numbers were carried out to investigate the effect of the locations of the heated inner cylinder on the fluid flow and heat transfer in the cooled square enclosure for different Rayleigh number in the rang $10^{3} \leq \mathrm{Ra} \leq 10^{6}$.

Cesini et. al. [7] performed the numerical and experimental analysis of natural convection from a horizontal cylinder enclosed in a rectangular cavity. The influence of the cavity aspect ratio and the Rayleigh number on the distribution of temperature and Nusselt number was investigated. As a result, the average heat transfer coefficients increases with increasing Rayleigh number.

Moukalled and Acharya [8] and Shu and Zhu [9] studied the change of the thermo-flow field between the low temperature outer square enclosure and high temperature inner circular cylinder according to the radius of the inner cylinder. They considered three different aspect ratios of the cylinder radios to the enclosure height in the range of $10^{4} \leq \mathrm{Ra} \leq 10^{7}$, showed that, at a constant enclosure aspect ratio, the total heat transfer increase with increasing Rayleigh number. When the Rayleigh number is constant, the convection contribution to the total heat transfer decrease with an increasing aspect ratio value. Shu and Zhu [9] obtained the numerical result, for Rayleigh numbers ranging from $10^{4}$ to $10^{6}$ and aspect ratios (as a pervious reference) between 1.67 and 5. It was found that, both the aspect ratio and Rayleigh number are critical to the patterns of flow and thermal fields. In addition, they suggested that a critical aspect ratio might exist at high Rayleigh number to distinguish the flow and thermal patterns. Tasnim and Mahmud [10] studied numerically the buoyancy induced flow and heat transfer characteristics inside an inclined Lshape enclosure. Results presented in the form of the average Nusselt number for a range of inclination angle $0^{\circ}-360^{\circ}$, Rayleigh number $1-$ $10^{5}$ and aspect ratio 0.1-0.5. Zhu et. al. [11] studied the natural convection heat transfer between two horizontal, elliptical cylinders using the differential quatrature (QD) method. It was found that, the position of the major axis of the inner ellipse takes effect on the streamlines and very little effect on the average Nusselt number.

However, there is little information about natural convection processes when a heated square cylinder exists within a cooled elliptical enclosure, for two cases, horizontal elliptical enclosure (HEE) and vertical elliptical enclosure (VEE). The purpose of the present study is to examine how the geometric parameters, $a / b$, and $l / b$ of the enclosure affects the natural convection phenomena for different Rayleigh numbers.

## Problem Specification

A schematic of the system considered in the present study for two cases, horizontal elliptical enclosure (HEE) and vertical elliptical enclosure (VEE) as shown in figure (1). The system consists of an elliptical enclosure with half major axis length $a$ and half minor axis length $b$, within which a square cylinder with a side length $l$ is located at the centerline of the elliptical enclosure. The walls of the square cylinder kept at constant high temperature $T_{h}$ whereas the wall of the elliptical enclosure was kept at constant low temperature $T_{c}$. In this study, assumed that, the radiation effects are negligible, and the fluid properties are constant except for the density in the buoyancy term, which follows the boussinesq approximation. As the square cylinder and the elliptical enclosure are long enough, so the flow is consider being steady, laminar and two dimensions. The enclosure filled with air and $\operatorname{Pr}=0.71$.

The dimensionless governing equation for the problem is written in the stream - vorticity formulation as:

Investigation Of Heat Transfer Phenomena And Natural Flow Behavior Around Heated Square Cylinder Placed In A Cooled Elliptical Enclosure
$\nabla^{2} \cdot \psi=-\omega$
$\omega_{t}+\psi_{y} \cdot \omega_{x}+\psi_{x} \cdot \omega_{y}=$
$\operatorname{Pr} \cdot \nabla^{2} \cdot \omega+\operatorname{Pr} \cdot R a \cdot T_{x}$
$T_{t}+\psi_{y} \cdot T_{x}+\psi_{x} \cdot T_{y}=\nabla^{2} \cdot T$
Hence, introducing the following non-dimensional variables:
$\mathrm{Ra}=\left(g \beta^{*}\left(T_{h}-T_{c}\right) l^{3} / v \alpha^{*}\right)$,
$\operatorname{Pr}=v / \alpha^{*}$
$x=x^{*} / l, y=y^{*} / l, u=u^{*} /\left(\alpha^{*} / l\right)$
$v=v^{*} /\left(\alpha^{*} / l\right), \omega=\omega^{*} \cdot l / u^{*}, \psi=\psi^{*} /\left(u^{*}\right.$
$T=\left(t-t_{c}\right) /\left(t-t_{c}\right), \omega=\partial v / \partial x-\partial u / \partial y$
$u=\partial \psi / \partial y, v=-\partial \psi / \partial x$
Then using general curvilinear coordinates $x=x \quad(\xi, \eta)$, $y=y(\xi, \eta)$, the set of nondimensional transformed equation are [9]:
$A \cdot \psi_{\xi \xi}+2 B \cdot \psi_{\xi \eta}+C \cdot \psi_{\eta \eta}+G \cdot \psi_{\eta}$
$+H \cdot \psi_{\xi}=-J \cdot \omega$
$\omega_{t}+\psi_{\eta} \cdot \omega_{\xi}-\psi_{\xi} \cdot \omega_{\eta}=$
$\operatorname{Pr} \cdot\left[\begin{array}{l}A \cdot \omega_{\xi \xi}+2 B \cdot \omega_{\xi \eta} \\ +C \cdot \omega_{\eta \eta}+G \cdot \omega_{\eta} \\ +H \cdot \omega_{\xi}\end{array}\right]+$
$\operatorname{Pr} \cdot R a \cdot\left[y_{\eta} \cdot T_{\xi}-y_{\xi} \cdot T_{\eta}\right]$
$T_{t}+\psi_{\eta} \cdot T_{\xi}-\psi_{\xi} \cdot T_{\eta}=$
$\left[\begin{array}{l}A \cdot T_{\xi \xi}+2 B \cdot T_{\xi \eta} \\ +C \cdot T_{\eta \eta}+G \cdot T_{\eta} \\ +H \cdot T_{\xi}\end{array}\right]$
Where
$\alpha=x_{\eta}^{2}+y_{\eta}^{2}, \gamma=x_{\xi}^{2}+y_{\xi}^{2}$
$J=x_{\xi} y_{\eta}-y_{\xi} x_{\eta}, \sigma=x_{\xi} x_{\eta}+y_{\xi} y_{\eta}$
$A=\alpha / J, B=-\sigma / J, C=\gamma / J$
$G=B_{\xi}+C_{\eta}, H=A_{\xi}+B_{\eta}$

## Grid Generation

In this study, an analytical expression could derive for the coordinate transformation from the physical domain to the computational domain; all-geometrical parameters
$u^{*}$.loould computed exactly. The super
elliptic function could be written as [9]:
$\left(\frac{x}{a}\right)^{2 n}+\left(\frac{y}{b}\right)^{2 n}=1$.
Where $a$ and $b$ are half of the elliptic lengths axis's in the $x$ and $y$ direction respectively, n a positive integer. So for this study could be expressed as:

## For inner square cylinder

$a=b=l$ and $n \geq 50$
For outer elliptical enclosure
$a \neq b(a=1.5 b, 2 b, 3 b)$ and $n=1$
The coordinate's transformation for the present problem can be exactly setup, which is written as:
$x=-\sin (\xi) \cdot\left[r_{i}+\left(r_{o}-r_{i}\right) \cdot \eta\right] \ldots(6)$
$y=\cos (\xi) \cdot\left[r_{i}+\left(r_{o}-r_{i}\right) \cdot \eta\right]$
Where $r_{i}$ is the equivalent radius of the inner square cylinder (equal side length) and it is constant, and $r_{o}$ is the equivalent radius of the outer elliptical enclosure and it is varied according to:
$r_{o}=\frac{1}{\left.(\cos \xi)^{2 n}+\sin (\xi)^{2 n}\right)^{(1 / 2 n)}} \ldots$
For the range of transformed computational domain to $\xi$ and
$\eta$ planes $\quad$ as $\quad 0 \leq \eta \leq 1$ and $0 \leq \xi \leq 2 \pi$. A typical generated grid is show in figure (2) for $41 \times 41$ nodes.

The imposed boundary conditions are no slip and isothermal on both inner square cylinder and outer elliptical enclosure surfaces. Therefore, the boundary conditions could be express as:
$\left.\psi\right|_{\eta=0}=0 . \quad,\left.\psi\right|_{\eta=1}=0$.
$\left.T\right|_{\eta=0}=1 . \quad,\left.T\right|_{\eta=1}=0$.
$\left.\omega\right|_{\eta=0,1}=\left.\frac{C}{J} \cdot \psi_{\eta \eta}\right|_{\eta=0,1},\left.\psi_{\eta}\right|_{\eta=0,1}=0$

## Numerical method

The governing equation in the curvilinear coordinates (equations 2 , 3, and 4) as well as boundary conditions (equation 9) were discretized by finite difference method. Where equations $2,3,4$, and 9 , provide a complete description of the problem. In this study the finite difference equation were derived by using central difference approximation for the partial derivatives except the convective terms for which upwind difference formula was employed. Derivative at the boundary were approximated by three point forward or backward difference. The explicit method was chosed for the solution of flow and energy fields, while relaxation method was chose for stream function calculation. A time increment $\Delta t=10^{-5}$ has been used for $\mathrm{Ra}=10^{3}-10^{5}$ and $10^{-7}$ for $\mathrm{Ra}=10^{6}$.

Additionally, the dimensionless local and average Nusselt number on the hot square
cylinder has been calculated by the following expression [5]:

$$
\begin{align*}
& N u_{l}=\frac{-1}{J \cdot \sqrt{\alpha}}\left(\alpha \cdot T_{\xi}-\sigma \cdot T_{\eta}\right) . .  \tag{10}\\
& N u_{\text {ave }}=\frac{1}{2 \pi} \int_{0}^{2 \pi} N u_{l} \cdot d \xi \quad \ldots \tag{11}
\end{align*}
$$

## Grid Independency study

Several grids have been tested for the case of HEE, $\mathrm{Ra}=10^{5}, a / b=2$., and $l / b=0.25$. Table (1) shows the average Nusselt number for four grids used.

It can be see that, a little difference between the last two sets of grid results and the grid of $41 \times 41$ is used in all subsequent calculation of this study to decrease the time cost of the solution convergence, without effecting in the solution accuracy.

## Validation Test

To validate the code validation, the natural convection problem for a low temperature outer square enclosure and high temperature inner circular cylinder was tested. The calculations of average Nusselt numbers for the test case are compared with the benchmarks values by Moukalled and Acharya [8] and Shu et. al [9] for different values of the aspect ratio $\mathrm{L} / \mathrm{D}$ and Rayleigh number as given in table (2).

In addition, the validation test data of the streamline, isothermal contours compared with the results of Shu et. al [9] for $\mathrm{Ra}=10^{5}$ and aspect ratios ( $\mathrm{L} / \mathrm{D}=1.67$ ) as shown in figure (3), where L and D represented the side length of the outer square cylinder and the diameter of the inner circular cylinder respectively.

## Results and Discussion

The results are presented for a number of cases (48 different physical domains) corresponding to two different cases, horizontal elliptical enclosure (HEE), and vertical elliptical enclosure (VEE), moreover to different geometric ratio $a / b$ and $l / b$, and Rayleigh numbers. The basic features of flow and heat transfer are analyzed with the help of the velocity vectors, streamlines pattern, and isothermal contours. In addition, local Nusselt numbers on the hot isothermal surface of the inner square cylinder are plotted.
Flow pattern and heat transfer
For all Rayleigh numbers considered in this study, the flow and thermal fields eventually reach steady state with symmetric shape about the vertical centerline through the center of the square cylinder. Thus the present problem has a symmetry about the vertical centerline at $x=0$. So, only one half of the geometry is chosen as the computational domain due to symmetry as shown in the results.

Figure (4) shows the velocity vectors, streamlines and isothermal contours for HEE case and $a / b=2, \quad l / b=0.25$ for different values of $\mathrm{Ra}=10^{3}$ to $10^{6}$. In general, the flow behavior can be described as fellow: the hot square cylinder pumps the hot fluid in the domain and rises upward near the vertical mid plane of the elliptical enclosure (point P 4 ) due to thermal expansion. This hot fluid moves with the path of elliptical enclosure wall after impinging on the roof. Finally, the colder and thus denser fluid descends along the cold sidewall as it meets cooled fluid a way from the cylinder.

From figure (4), for low Ra, the heat transfer in the elliptical enclosure is mainly dominated by the conduction mode and the circulation of the flow shows one overall rotating eddy with one vortex as a circle shape according to the streamlines simulation due to the weakness in convection contribution. However, if Ra increases the role of convection in heat transfer becomes more significant and consequently the thermal boundary layer on the surface of the inner square cylinder becomes thinner. In addition, a plump starts to appear on the top of the square cylinder and as a result, the isotherms move upward giving rise to a strong thermal gradient in the upper region of the enclosure (from P3 to P4). Moreover, much lower thermal gradient in the lower region in the enclosure (from P1 to P2).
In consequence, the dominant can be see, flow is in the upper region of the enclosure, the vortex exists nearly in the middle of the enclosure, and its moves towards the upper region as Rayleigh number increase, where the flow at the lower region in the enclosure is very weak compare with that at the middle and top regions. The increase in Rayleigh number leads to deform the isotherms due to dissipated in the thermal boundary layer on the square cylinder from the bottom to the top and on the elliptical enclosure wall surface from the top to the bottom. Isothermal contours are uniform and regular for low Rayleigh number but as Ra increases these lines redistributed irregularly from hot square cylinder to the elliptical enclosure due to the higher in convection contribution.

If the $l / b$ ratio increases, the thermal mixing of the flow will be strong and the isothermal contours could be more deform from the previous case, as shown in figure (5) for $l / b=0.5$. As it can be seen from this figure for high Rayleigh number, there are two vortices in the domain especially at $\mathrm{Ra} \geq 10^{5}$ because the source of the heat region is large compared with the previous case (figure 4).

The same behavior of flow pattern and isothermal contours could be see at figures (6), and (7) for vertical elliptical enclosure case (VEE), but the flow is weak comparing with that at (HEE) case due to a smaller flow domain thus smaller flow strength (streamlines value) especially at low Rayleigh number. In figure (6) the flow is compressed in the domain and one vortex exits nearly in the middle of the domain at low Rayleigh number, but if Ra increases this vortex moves up to the upper region of the enclosure and its becomes greater than of that in low Rayleigh number. Isothermal contours for VEE case as shown in figure (6) have the same behavior of HEE case but for different values of temperature, where it uniform for low Ra and non uniform, with more deformation for high Ra , due to the change in the thermal boundary layer.

If the ratio $l / b$ increases as shown in figure (7) three vortices located in the on the upper, middle, and lower regions in the enclosure are developed for low Ra , but if Ra increases the middle and lower vortices are finished and the upper vortex is become larger and deform downward the enclosure.

## Effect of The Geometric Parametes

In order to asses the effect of the geometric parameters $a / b$ and $l / b$ ratios, three different configurations $a / b=1.5,2$, and 3 , and two ratio of $l / b=0.25$, and 0.5 have been studied in the present study for two cases of (HEE), and (VEE).

Figure (8) demonstrates the case of (HEE), $\mathrm{Ra}=10^{6}$, and $l / b=0.25$, if $a / b$ ratio increase the streamline extended towards the major axis of the elliptical enclosure, and the isothermal contours values decreases. In addition, the thermal flux dissipated towards the major axis and weakened at the lower region of the enclosure. For $l / b$ ratio, as it is increased as shown in figure (9) leads to two vortices in the enclosure, first vortex located at the upper region of the enclosure while the second vortex located at the middle of the domain close to the upper cold surface. Moreover, if the $a / b$ ratio increases the vortices in the domain become weak and small
due to the heat removal from the square cylinder. Isothermal contours also become weak with increase $a / b$ ratio.

Figure (10) and (11) show the results of local Nusselt number on the hot square cylinder surface for different conditions of $a / b$, $l / b$ ratios and Rayleigh number for two cases of enclosure position (HEE, VEE). Figure (10) shows that for (HEE) case, where for all values of Rayleigh number (A, B, and C) the curves growth gradually from lower value of $N u_{l}$ at the point P 1 at the lower surface of the square cylinder due to small temperature difference
in this region (weak thermal boundary layer). Moreover, suddenly, could be take a first peak value at the lower tip of the square cylinder at point P2 due to the sudden change in the surface geometry and to increase in the temperature difference. The $N u_{l}$ increases gradually due to growth of thermal boundary layer in the middle of the elliptical enclosure especially at high Rayleigh number, so, the temperature difference increases too, until reach to the second peak value at the point P3, due to the change of the surface geometry. After point P3 the thermal boundary layer could be reduced and leads to a temperature difference in this region comparing with that before point P3. Also, figure (10) (A, B , and C ), show that as $a / b$ ratio increase leads to increase in the value of $N u_{l}$ for all cases of Rayleigh number due to extended in the major axis of the elliptical enclosure (enclosure become wider), moreover to the increase in the temperature difference according to that.

The right side of figure (10)
(D, E, and F) for case $l / b=0.5$, clarified nearly the same behavior
with different values of $N u_{l}$ except at high Rayleigh number $\mathrm{Ra}=10^{6}$, where there is a decrease in the $N u_{l}$ in the lower region of the enclosure (from P1 to P2) due to the creation of two eddies vortices in the domain resulted from strong thermal boundary layer. After point P2 the curves have the same behavior as shown in the previous figures (A, B, and C) with different values of local Nusselt number, also, increase $a / b$ ratio leads to increase the peaks values of the curve of $N u_{l}$ for all

Rayleigh numbers. Also, If $l / b$ ratio increase leads to decrease in the values of $N u_{l}$ at fixed values of $a / b$ ratio for all Rayleigh numbers with change in the behavior in $\mathrm{Ra}=10^{6}$ case, due to the creation of two eddy vortices in the domain for higher $l / b$ ratio and for strong thermal boundary layer in this case.

Figure (11) indicates the local Nusselt number on the hot surface of square cylinder for different ratios of $a / b, l / b$ ratios and Rayleigh number for (VEE) case. The same behaviors could be see as shown in previous figure with different values of $N u_{l}$, except at $\mathrm{Ra}=10^{6}, \quad l / b=0.5$, HEE, where there are two vortices in the domain and changed in the profile. Where increasing $a / b$ ratio leads to increase the peaks values of the curve of $N u_{l}$ at fixed $l / b$ ratio for all Rayleigh numbers values. Also increase $l / b$ ratio leads to decrease $N u_{l}$ at fixed $a / b$ ratio for all Ra.
Also for fixed case, the $N u_{l}$ in (VEE) case is greater than to that at (HEE) case.

Tables (3), and (4) show the values of the flow strength and average Nusselt number for different ratios of $a / b, l / b$ and Rayleigh number for (HEE) and (VEE) cases. From the results, increasing Rayleigh number leads to increase values of flow strength and $N u_{\text {ave }}$ due to the increasing effect of convection. Also for fixed Rayleigh number, increasing $a / b$ ratio leads to decrease in flow strength and increase in the values of $N u_{\text {ave }}$ for both cases of HEE and VEE. Also,

Investigation Of Heat Transfer Phenomena And Natural Flow Behavior Around Heated Square Cylinder Placed In A Cooled Elliptical Enclosure
increase the $l / b$ ratio leads to decrease in the flow strength at $\mathrm{Ra} \leq 10^{4}$ in HEE case and at $\mathrm{Ra} \leq 10^{5}$ in VEE case, otherwise the flow strength increase, and decrease in $N u_{\text {ave }}$ for both cases. Moreover, it was found that, the position of the major axis of the elliptical enclosure (HEE, and VEE cases) has noticeable large effect on the streamlines, and very little effect on the average Nusselt number.

## Conclusions

The present study investigates numerically the flow and heat transfer characteristics of a twodimensional natural convection problem on a hot square cylinder placed in a cooled ellipticall enclosure. A detailed analysis for the distribution of streamlines, isotherms and Nusselt numbers were carried out to investigate the effect of the position of the major axis of the enclosure for two cases HEE, and VEE, with different geometric parameters $a / b$, and $l / b$ on the flow field and heat transfer in the enclosure for different Rayleigh number in the rang $10^{3}$ to $10^{6}$. For all Rayleigh numbers considered in the present study the flow and thermal fields eventually reach the steady state with the symmetric shape about the vertical centerline of the
enclosure. The major results may be summarized as follows: (1) At fixed $a / b, l / b$ ratios, the average Nusselt number increase with increase in Rayleigh number; (2) The increase of major axis of the enclosure ( $a / b$ ratio) leads to increase the average Nusselt number and decrease the flow strength for all Rayleigh number; (3) For $\mathrm{Ra} \leq 10^{4}$, there are a little difference in the results of
$N u_{\text {ave }}$ for all $a / b$ and $l / b$ ratios, but if Ra increase, the change in the results could be clear and large; (4) Increase the $l / b$ ratio leads to decrease in the flow strength at $\mathrm{Ra} \leq 10^{4}$ in HEE case and at $\mathrm{Ra} \leq 10^{5}$ in VEE case, otherwise, the flow strength increase, and decrease in $N u_{\text {ave }}$ for both cases; (5) In HEE, and VEE cases there are little change in the values of the $N u_{\text {ave }}$, with large difference in the flow strength.

## Nomenclature

$A, B, C$, Transformation parameters.
G, $H$
$a, b \quad$ Half of the major and the minor axis length respectively (m)
J Jacobian
$l \quad$ Side length of the square cylinder (m)
$\mathrm{Nu} \quad$ Nusselt number
P1,P2 Points on the square cylinder
P3,P4 surface
Pr Prandlt number
$\mathrm{Ra} \quad$ Rayleigh number
T Dimensionless Temperature
g Gravitational acceleration ( $\mathrm{m} / \mathrm{sec}^{2}$ )
HEE, Horizontal, and Vertical elliptical
VEE enclosure
u,v Dimensionless contravariant velocity components in $\xi$, and $\eta$ coordinates
$x$, $y \quad$ Dimensionless Cartesian coordinates

## Greek symbols

$\alpha, \gamma, \sigma$ Transformation functions
$\beta^{*} \quad$ Thermal expansion coefficient (1/k)
$\alpha^{*} \quad$ Thermal diffusivity of fluid ( $\mathrm{m}^{2} / \mathrm{sec}$ )
$\xi, \eta \quad$ curvilinear coordinates
$\psi \quad$ Stream function
$\omega \quad$ Vorticity
$v \quad$ Kinematics viscosity
( $\mathrm{m}^{2} / \mathrm{sec}$ )
$\nabla^{2} \quad$ Operator Laplace
Superscripts

- Dimensional form

Subscripts

| ave | Average |
| :---: | :--- |
| $c$ | Cold surface |
| $h$ | Hot surface |
| $l$ | Local |
| $\max$ | Maximum value |
| $x, y$ | Derivative relative to |
| $\xi, \eta, t$ | $x, y, \xi$, and $\eta$ respectively. |

References
[1] Ding, H., Shu, C., Yeo, K.S., and Lu, Z.L., "Simulation of a natural convection in eccentric annuli between a square outer cylinder and a circular inner cylinder using local MQ- $\Delta Q$ method'", Numer. Heat Transfer, part A, 47, 2005, pp. (291-313).
[2] Shu, C., Xue, H., and Zhu, Y.D., "Numerical study of natural convection in an eccentric annulus between a square outer cylinder and a circular inner cylinder using DQ method", Int. J. of heat and mass transfer, 44, 2001, pp. (3321-3331).
[3] Roychowdhury, D.G., Das, S.K., and Sundararajan, T.S., "Numerical simulation of natural convection heat transfer and fluid flow around a heat cylinder inside an enclosure", J. of heat and mass transfer, 38, 2002, pp. (565-576).
[4] Asan, H., "Natural convection in an annulus between two
isothermal concentric square ducts", Int. comm.. heat mass transfer, 27, 2000, pp. (367376).
[5] Kumar De, A., and Dalal, A., "A numerical study of natural convection around a square horizontal heated cylinder placed in an enclosure", Int. J. heat mass transfer, 49, 2006, pp. (4608-4623).
[6] Kim, B.S., Lee, D.S., Ha, M.Y., and Yoon, H.S., "A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations", Int. J. heat and mass transfer, 51, 2008, pp. (1888-1906).
[7] Cesini, G., Paroncini, M., Cortella, G., and Manzan, M., "Natural convection from a horizontal cylinder in a rectangular cavity", Int. J. heat mass transfer, 42, 1999, pp. (1801-1811).
[8] Moukalled, F., and Acharya S., "Natural convection in the annulus between concentric horizontal circular and square cylinders", J. Thermophys. Heat transfer, 10, 1996, pp. (524-531).
[9] Shu, C., and Zhu, Y.D., "Efficient computational of natural convection in a concentric annulus between an outer square cylinder and inner circular cylinder", Int. J. Numer. Meth. Fluid, 38, 2002, pp. (429-445).
[10] Tasnim, S. H., and Mahmud, S., "Laminar free convection inside an inclined L-shaped enclosure", Int. J. heat and mass transfer, 33, 2006, pp.
(936-942).
[11] Zhu, Y. D., Shu, C., Qiu, J., and Tani, J., " Numerical simulation of natural convection between two elliptical cylinders using DQ method", Int. J. heat and mass transfer, 47, 2004, pp. (797808).
[12] Shu, C., "Differential quadrature and its application in engineering",SpringerVerlag, London, 2000.
[13] Baehr, H. D., and Stephan, K.," Heat and mass transfer," second, revised edition, Springer-Verlag, Germany, 2006.
[14] Thompson, J. F., soni, B.K., and weatherill, N. P., "Handbook of grid generation', New York, by CRC Press LLC, 1999.
Table $1 \mathbf{N u}_{\text {ave }}$ results for several grids for HEE, $\mathrm{Ra}=10^{5}, a / b=2$, and

$$
l / b=0.25
$$

| Grid size | $\mathbf{N u}_{\text {ave }}$ | $\left\|\psi_{\text {max }}\right\|$ |
| :---: | :---: | :---: |
| $21 \times 21$ | 9.89 | 11.88 |
| $31 \times 31$ | 10.42 | 12.03 |
| $41 \times 41$ | 10.63 | 12.44 |
| $51 \times 51$ | 10.64 | 12.46 |

Table 2 Comparison of the present average Nusselt number with those of the previous studies of references [8] and [9].

| $\begin{gathered} \mathbf{L} / \\ \mathbf{D} \end{gathered}$ | Ra | [8] | [9] | Presen <br> t study |
| :---: | :---: | :---: | :---: | :---: |
| 5 | $10^{4}$ | 2.071 | 2.08 | 2.105 |
| 2.5 |  | 3.331 | 3.24 | 3.195 |
| 1.67 |  | 5.826 | 5.40 | 5.413 |
| 5 | $10^{5}$ | 3.825 | 3.79 | 3.807 |
| 2.5 |  | 5.080 | 4.86 | 5.050 |
| 1.67 |  | 6.212 | 6.21 | 6.182 |
| 5 | $10^{6}$ | 6.107 | 6.11 | 6.201 |
| 2.5 |  | 9.374 | 8.90 | 9.254 |
| 1.67 |  | 11.62 | 12.0 | 11.624 |

Table (3) Flow strength and average Nusselt number for HEE
case

| $\frac{a}{b}$ | Ra | $\left\|\psi_{\max }\right\|$ |  | $\mathbf{N u}_{\text {ave }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $l / b=$ |  |  |  |
|  |  | 0.25 | 0.5 | 0.25 | 0.5 |
| 1.5 | $10^{3}$ | 0.868 | 0.563 | 3.612 | 3.606 |
| 2 |  | 0.624 | 0.506 | 4.586 | 4.470 |
| 3 |  | 0.290 | 0.268 | 6.692 | 6.436 |
| 1.5 | $10^{4}$ | 5.639 | 4.379 | 5.070 | 4.090 |
| 2 |  | 4.465 | 3.938 | 5.984 | 5.068 |
| 3 |  | 2.562 | 2.394 | 7.592 | 6.788 |
| 1.5 | $10^{5}$ | 14.17 | 14.61 | 8.991 | 6.291 |
| 2 |  | 12.44 | 13.93 | 10.63 | 7.623 |
| 3 |  | 9.29 | 9.787 | 13.38 | 9.503 |
| 1.5 | $10^{6}$ | 27.84 | 28.41 | 15.53 | 12.50 |
| 2 |  | 23.89 | 24.76 | 18.60 | 14.89 |
| 3 |  | 18.88 | 21.14 | 23.41 | 18.27 |

Table (4) Flow strength and average Nusselt number for VEE case

| $\frac{a}{b}$ | Ra | $\left\|\psi_{\text {max }}\right\|$ |  | $\mathrm{Nu}_{\text {ave }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $l / b=$ |  |  |  |
|  |  | 0.25 | 0.5 | 0.25 | 0.5 |
| 1.5 | $10^{3}$ | 0.35 | 0.11 | 3.494 | 3.458 |
| 2 |  | 0.185 | 0.079 | 4.417 | 4.404 |
| 3 |  | 0.081 | 0.040 | 6.213 | 6.209 |
| 1.5 | $10^{4}$ | 3.528 | 1.377 | 4.624 | 3.652 |
| 2 |  | 2.007 | 1.019 | 5.115 | 4.463 |
| 3 |  | 0.832 | 0.452 | 6.447 | 6.223 |
| 1.5 | $10^{5}$ | 15.50 | 10.63 | 9.146 | 5.694 |
| 2 |  | 13.00 | 9.474 | 10.76 | 6.382 |
| 3 |  | 7.94 | 5.738 | 12.60 | 7.950 |
| 1.5 | $10^{6}$ | 29.69 | 33.01 | 15.77 | 10.65 |
| 2 |  | 28.11 | 31.95 | 19.32 | 13.03 |
| 3 |  | 28.06 | 30.72 | 25.25 | 16.87 |



Figure (1) A schematic view and geometry description of the physical domain Left side: HEE right side: VEE


Figure (2) A typical grid generation (41*41 grids) for $a / b=1.5, l / b=0.25$ Left side: HEE right side: VEE


Figure (3) A comparison of the present results with that of reference [9] for $\mathrm{Ra}=10^{5}$, and $\mathrm{L} / \mathrm{D}=1.67$, Left side: Streamlines right side: isotherms


$$
R a=10^{3}
$$



$$
R a=10^{4}
$$



$$
R a=10^{5}
$$


$R a=10^{6}$


Figure (4) Velocity vectors (left side), streamlines (middle side), and isotherms (right side) for $a / b=2, l / b=0.25$, and HEE case.


Figure (5) Velocity vectors (left side), streamlines (middle side), and isotherms (right side) for $a / b=2, l / b=0.5$, and HEE case.

Relative (Grid units/Magintude)
$=0.03$


Relative (Grid units/Magintude)


Relative (Grid units/Magintude) $=0.001$


Relative (Grid units/Magintude) $=0.0005$


$$
R a=10^{3}
$$


$R a=10^{4}$

$R a=10^{6}$


Figure (6) Velocity vectors (left side), streamlines (middle side), and isotherms (right side) for $a / b=2, l / b=0.25$, and VEE case.

Eng. \& Tech. Journal,Vol. 28 No.4,2010
Investigation Of Heat Transfer Phenomena And Natural Flow Behavior Around Heated Square Cylinder Placed In A Cooled Elliptical Enclosure

Relative (Grid units/Magintude)
 $=0.05$

Relative (Grid units/Magintude) $=0.007$


Relative (Grid units/Magintude) $=0.001$


Relative (Grid units/Magintude) $=0.0005$



$$
R a=10^{6}
$$



Figure (7) Velocity vectors (left side), streamlines (middle side), and isotherms (right side) for $a / b=2, l / b=0.5$, and VEE case.


Figure (8) Velocity vectors (left side), streamlines (middle side), and isotherms (right side) for different $a / b$ ratio, and $\mathbf{R a}=10^{\mathbf{6}}, l / b=0.25$, HEE case.


Figure (9) Velocity vectors (left side), streamlines (middle side), and isotherms (right side) for different $a / b$ ratio, and
$\mathbf{R a}=10^{\mathbf{6}}, l / b=0.5$, HEE case.

Investigation Of Heat Transfer Phenomena And Natural Flow Behavior Around Heated Square Cylinder Placed In A Cooled Elliptical Enclosure


Figure (10) Local Nusselt number distribution on the hot square cylinder surface for different geometric narameters $(a / b . l / b)$. and different Ravleigh numbers in HEE case.


Figure (11) Local Nusselt number distribution on the hot square cylinder surface for different geometric parameters $(a / b, l / b)$, and different Ravleigh numbers in VEE case.

