Effect of Sintering Temperature on Some Physical And Mechanical Properties of Fabricated Hydroxyapatite Used For Hard Tissue Healing

Dr. Kahtan Khalef Al-Khazraji*, Dr. Waleed Asim Hanna** & Payman Suhbat Ahmed

Received on:28/10/2008
Accepted on:3/12/2009

Abstract
This work focuses on studying the role of drying and calcination on stiochiometry and crystallinity of deposited HA. Also, studying the effect of sintering temperature on phases generated, physical and mechanical properties of sintered HA powder compact at a range of (800-1200) °C.

Both Ca/P ratio and crystallinity were increased after calcination, where the Ca/P ratio raised from 1.7 to 1.9 and the height of Hydroxyapatite peak intensity was also increased. Secondary phases also appeared.

X-ray diffraction patterns and electrical microscopic pictures of polished surfaces of the Hydroxyapatite compact after sintering had revealed the process of densification and crystallization of Hydroxyapatite. The increase of sintering temperature leads to grain growth, while surface cracking and other defects became lower i.e. porosity and surface voids.

Both hardness and fracture strength were increased for samples sintered at high temperatures where they reached their maximum values at sintering temperature (1200) °C. The maximum linear shrinkage was 20% at sintering temperature 1200°C. The maximum bulk density was (2.173) g/cm³ at sintering temperature of 1200°C and the maximum apparent density was (2.58) g/cm³ at sintering temperature 900°C. The maximum apparent and open porosities were 47.136% and 47.058% respectively at sintering temperature 900°C. The maximum water absorption was 39.13% at sintering temperature 800°C.

Keywords: Bioceramics, preparation of Hydroxyapatite, Bioactive Hydroxyapatite, Reinforcement of Hydroxyapatite.

** تأثير درجة حرارة التّلبيد على بعض الخصائص الفيزيائية والكيميائية للهيدروكسيapatيت المصنّع والمستخدم لمعالجة الأنسجة الصلبه

* جامعة بغداد، كلية الهندسة، وحدة المواد المصنعة

** جامعة بغداد، كلية الهندسة، وحدة المواد المصنعة

https://doi.org/10.30684/etj.28.10.1
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0
Effect of Sintering Temperature On Some Physical And Mechanical Properties of Fabricated Hydroxyapatite Used For Hard Tissue Healing

1. Introduction

The remarkable progress of ceramics in last decades has resulted in the development of materials with chemical, physical and mechanical properties that are suitable for biomedical application. Ceramic materials used for this purpose are known as bioceramics[1].

Bioceramics can be used as structural parts like: joint or tissue replacements, can be used as coatings to improve the biocompatibility of metal implants, and can function as resorbable lattices which provide transient structures and a framework that is dissolved replaced as the body rebuilds tissue. The thermal and chemical stability of ceramics, their high strength, wear resistance and durability all contribute to making ceramics good candidate materials for surgical implants. Some ceramics even feature drug delivery capability[2, 3].

Calcium phosphate is found in a variety of forms which are well-known in the art, such as hydroxyapatite HA(Ca\(_{10}\)(PO\(_4\))\(_6\)(OH)\(_2\), Ca/P=1.67), Tricalcium phosphate TCP (Ca\(_3\)(PO\(_4\))\(_2\), Ca/P=1.5), and brushite (CaHPO\(_4\)-2H\(_2\)O , Ca/P=1), as well as in amorphous form ACP(Ca\(_x\)(PO\(_4\))\(_y\)NH\(_2\)O, Ca/P=\(\approx\) 1.5). The relative stability of the predominant form of calcium phosphate is ACP<TCP<HA[4]. Among calcium phosphate forms: HA, bioactive glass and glass-ceramic are used in biomedical field[5].

Among the calcium phosphate ceramics, i.e.,Ca\(_4\)P\(_2\)O\(_9\), HA and TCP(\(\beta\)-whitlockite), are known to lead to differences in biodegradation behavior that biodegradable TCP ceramics give rise to extensive bone remodeling around the implant[1].

Apatite is a group of minerals which are produced and used by biological systems[6].

Apatite is a group of minerals which usually refer to hydroxyapatite, fluorapatite, and chloroapatite, named for high contaminations of OH, F, and Cl ions respectively, in the crystal lattice[7,8].

HA is the major component of tooth, enamel, and a large component of bone material[9].

1881
Synthetic carbonate apatites usually display reduced crystallinity whereas biological apatites appear to become more crystalline as the carbonate content increases\(^\text{[9]}\).

The naturally occurring form of calcium apatite is with the formula Ca\(_5\)(PO\(_4\))\(_3\)(OH), but is usually written as \(\text{Ca}_{10} \left(\text{PO}_4\right)_{6} (\text{OH})_{2}\) to denote that the crystal unit cell comprises two molecules. Pure hydroxyapatite powder is white, odorless, and tasteless\(^\text{[6,10]}\). Table (1) illustrates the identity of hydroxyapatite\(^\text{[6,10,11,12,13]}\).

Synthetic hydroxyapatite is of great importance as a biomaterial. It is one of the few materials that are classed as bioactive (it is one of two materials capable of forming a chemical bond with bone. In vivo the other being bioactive glass of various compositions\(^\text{[14]}\)). Unlike other materials such as alumina and zirconia, which are identified as foreign materials and become encapsulated by fibrous tissue, HA is sometimes used in powder form, but in most cases it is used as a bulk material\(^\text{[15]}\).

HA powder is sensitive depending on preparation conditions e.g. the reaction system used, starting material, pH, temperature, ripening time, calcination temperature, etc\(^\text{[18]}\). Pore volume and size distribution greatly depend on both sintering temperature and sintering method\(^\text{[19]}\).

Pure HA degrades rapidly and easily if conditions are correct: pH, chemical attack, phagocytosis\(^\text{[20]}\).

HA powders have generally been synthesized from aqueous solutions for use in bioceramic applications. It is known that calcium HA is the least soluble and the most stable compound of calcium phosphate phases in aqueous solutions at pH values higher than 4.2. However, HA powders synthesized in highly alkaline media were recognized by their relatively high thermal stability and phase purity even after high temperature (1100-1300) °C sintering\(^\text{[21]}\).

Some secondary phases are formed during HA sintering process and there are related to its\(^\text{[22]}\): a-Original Ca/P ratio. b-Chemical composition. c-Sintering temperature

2. Experimental work

The following materials were used for the preparation of HA powder:-Calcium hydroxide Ca(OH)\(_2\), -Phosphoric acid H\(_3\)PO\(_4\), -poly-vinyl alcohol (PVA) as a binder, -drops of sodium hydroxide (NaOH) used as pH fixer\(^\text{[18]}\), -Distilled water, -Ethanol (99.9%).

A suspension of (27)g of Ca(OH)\(_2\) was dissolved in 1000ml of distilled water and vigorously stirred, then a solution of (24.6)g of H\(_3\)PO\(_4\) was diluted in 1000ml of distilled water was slowly added as dropwise over 1 to 2hrs under a condition of pH=8 to produce a gelatinous precipitate.

The reaction mixture was aged at room temperature for a week. The resulting slurry was cleared by removing floated liquid and then washed with distilled water and then washed with ethanol and the floated liquid was also cleared.

The resulting slurry was dried at 80°C in an oven over night; the resulting material was re-milled and calcined at 800°C for 3hrs.
The finely ground powder was mixed with 2% PVA and 250ml warm distilled water and mixed for 15 mins, and then dried in an oven at 80ºC and then the re-milled powder was sieved to (<106μm)\[23,24\].

Pressing was done by a hydraulic pressing machine with capacity of (384.31)Mpa in a tool steel die of (2.55cm) in diameter with pressing pressure of (76.756) Mpa for two minutes.

Sintering of samples were done at different temperatures of (800, 900, 1000, 1100, 1200) ºC and at holding time of (3) hrs. With a heating rate of 5ºC/min \[9\] is set up to the required temperatures, then left in the furnace for cooling.

Characterization of sintered samples

X-ray diffraction inspection was performed by using Philips diffract meter pw 1840 with a Cu Kα radiator tube and Ni filter and the diffraction angle (2θ) was between (20-60)º.

And Ca/P ratio for the HA powder was evaluated before and after calcinations by atomic absorption and the ratio was 1.7 before sintering and 1.9 after sintering.

Electron microscopic examination was used to evaluate the particle shape. Figure (1) shows the particle shape of HA powder which obviously seems irregular and semicircular with a wide distribution. And Particle size distribution was carried out in a laser diffraction particle size analyzer “SHIMADZU SALD-2101”. The mean value of diameter was (87.821)μm and the median value was (123.483)μm.

Apparent and real densities were measured by the conventional methods i.e. cup cone and pecnometer respectively\[25,26\].

Sintered samples were prepared by grinding and polishing then etched with (0.1)M of acetic acid CH\(_3\)COOH, followed by washing with distilled water then with ethanol. And the sample surfaces were colored with ink to enhance the microstructural observation which was examined by an optical microscope at a magnification of (X 63).

Linear shrinkage percentage was measured depending on diameteral change by using micrometer, before and after sintering

\[\text{Linear shrinkage } \% = \frac{D_o - D}{D_o} \times 100\]

\(L.sh\): Linear shrinkage.
\(D_o\) : Sample diameter after pressing (mm).
\(D\) : Sample diameter after sintering (mm).

Apparent and bulk densities as well as apparent and open porosities of sintered HA compact powder were measured, using the standard Archimede’s method\[25,26\].

Fracture strength test was carried out by using the diametrial compression disc test (Brazilian test) where the disc was placed between two surfaces and a load was applied in the rate of (0.5 mm/min) , then the force obtained at fracture was recorded, then the following equation was applied to calculate the strength of material\[29\]:

\[\sigma_f = \frac{2p}{\pi dt}\]

\(\sigma_f\) : Fracture strength (N/mm\(^2\)).
P : applied load (N).
d : sample diameter (mm).
t : sample thickness (mm).

Vickers method was used to measure the hardness of the sintered samples at loading force of (5N) then using the following equation:

$$HV = \frac{P}{(d_{av})^2}$$

P : applied load (kg)
d_{av} : indentation of average diameter (mm)
HV : hardness value (kg/mm2)

3. Results and Discussion

Both Ca/P ratio and crystallinity were increased after calcination, where the Ca/P ratio was increased from 1.7 to 1.9 and the height of (HA) peak intensity was also increased. Secondary phases appeared i.e. β-Ca$_3$(PO$_4$)$_2$, Ca$_2$P$_2$O$_7$, β-Ca$_3$P$_2$O$_7$, Ca$_4$P$_2$O$_9$), according to the X-ray diffraction patterns as explained in appendix (1a,b). The existence of secondary phases such as Ca$_2$P$_2$O$_7$ and Ca$_3$(PO$_4$)$_2$, associated with (HA) will enhance the biological activity of (HA). The increase in Ca/P ratio is due to the appropriate pH and calcination temperature which leads to more easily increase of Ca/P ratio up to about 1.9. Such increases in Ca/P ratio may be related to ease of release of (PO$_4$)$^{3-}$ ions from the solid phase to the liquid phase at high pH and high temperature$^{[18]}$.

HA phase was the major phase at almost X-ray patterns reflections, also Ca$_2$P$_2$O$_7$ is observed at many X-ray diffraction patterns. Other secondary phases indicated were α-Ca$_3$P$_2$O$_7$, β-Ca$_3$P$_2$O$_7$, γ-Ca$_3$P$_2$O$_7$, δ-CaP$_2$O$_6$,Ca(PO$_4$)$_2$, Ca$_3$(PO$_4$)$_2$, β-(CaP$_2$O$_6$) and Ca$_2$P$_2$O$_7$. (EM) pictures of polished surfaces of the sintered HA powder compacts after sintering revealed the process of densification and crystallization of HA. They were used to evaluate the surface defects (cracks and pores) that could be formed in HA samples during sintering with the varying of sintering temperature.

It can be seen in appendix (2 a-e) that intensity peak heights of HA vary with the increase of temperature, and it reaches the maximum height at 900$^\circ$C, then decreases at 1000$^\circ$C to increase again at 1100$^\circ$C and decreases again at 1200$^\circ$C. The decrease of the peak heights is due to the formation of different phases. The increase of temperature leads to grain growth at which the maximum grain size can be observed at 1200$^\circ$C. It also seems that at 1200$^\circ$C the surface crack and other defects become lower, as shown in figure (2,e).

As temperature of sintering increases the linear shrinkage increases because of the evaporation of binder, moisture and the densification$^{[31]}$. The maximum linear shrinkage was 20% at 1200$^\circ$C and the minimum L.sh % was 0.67% at 800$^\circ$C. The linear shrinkage percentage increases with the increase of temperature because of surface area of fine particles that have their effect on components. After firing, surface area is much reduced$^{[32]}$. Linear shrinkage behavior with temperature is shown in figure (3).

Apparent density and bulk density relatively increase with the increase of temperature as shown in figure (4, 5), because of the increase of water loss.

1884
and linear shrinkage due to densification and the differences between densities are affected by chemical composition \cite{33}. Particle size and shape of particles of powder which is varying from semicircular to irregular shapes with different size distribution of small particles. It is obvious that at temperature of 900°C the apparent density is increased due to the wide presence of (HA , Dx=3.156) depending on the heights of peak intensities and (\(\beta\)-Ca\(_2\)P\(_2\)O\(_7\) , Dx=3.128) and (Ca\(_2\)P\(_2\)O\(_7\) , Dx=3.09) which have high densities compared with the other phases in 800°C and 1000°C. It seems that the appearance of (Ca\(_3\) (PO\(_4\))\(_2\), Dx=2.87) phase at these temperatures is the reason for being that apparent density lower at 900°C, and both densities (apparent and bulk) increase again after 1000°C due to the presence of (HA) and (\(\beta\)-Ca\(_2\)P\(_2\)O\(_7\) in high intensities. The maximum bulk density was (2.173) g/cm\(^3\) at 1200°C and the maximum apparent density was (2.58) g/cm\(^3\) at 900°C. The minimum bulk density was (1.2) g/cm\(^3\) at 800°C and the minimum apparent density was (2.27) g/cm\(^3\) at 800°C.

Apparent and open porosities are decreased with increasing temperature as shown in figure (6,7) due to the reduction in pore volume and the total volume of the sintered compact powder because of the increase in density\cite{34}, while the (OH) as a vapor phase released from (HA) could represent the major reason that caused the remaining micro pores \cite{32}. The maximum apparent and open porosities were 47.136% and 47.058% respectively at 900°C and the minimum apparent and open porosities were 12.379% and 12.57% at 1200°C. Water absorption decreases with the increase of sintering temperature as shown in figure (8) since the water absorption is proportional to apparent porosity \cite{31}. The maximum water absorption was 39.13% at 800°C and the minimum water absorption was 5.785% at 1200°C.

At low temperatures, fracture strength is relatively high as temperature increases the fracture strength decreases and it reaches its minimum amount (1.15)N/mm\(^2\) at (1000) °C as shown in figure (9) i.e. fracture at this regime is brittle and occurs by extension of inherent flaws, at all intermediate temperature regime, the strength falls because the formation of low strength phases (\(\beta\)-Ca\(_2\)P\(_2\)O\(_7\) , \(\gamma\)-Ca\(_2\)P\(_2\)O\(_7\) and Ca\(_3\)(PO\(_4\))\(_2\)), and the fracture occurs from flaws now produced by limited plastic flow.

At high temperatures regime where the strength raises again with temperature increase until it reaches its maximum value (6.57)N/mm\(^2\) at 1200°C due to the increase in mechanical bonding \cite{34} and fracture at this regime is accompanied by extensive plastic deformation\cite{35}.

Hardness increases slightly at low temperatures and then decreases at 1000°C, then it start increasing at higher temperatures as shown in figure (10). The maximum hardness was (87.4)Kg/mm\(^2\) at 1200°C and the minimum hardness was (36.2)Kg/mm\(^2\) at 1000°C. The slight increase in hardness in the first stages of sintering is due to the formation of grain boundaries by atomic diffusion...
in solid state sintering process. The decrease in hardness may be attributed to the formation of multi-phases which comprise different thermal expansion coefficient, which may exhibit cracking near to grain boundary phases \[31\]. Hardness increases again due to the decrease in porosity and due to the fracture of the walls between contiguous pores which is lower at high temperatures \[36\].

4. Conclusions

1. At 1000°C, a critical point exists in most of the physical and mechanical properties due to the formation of multiple phases.
2. 1200°C, is preferred to get high fracture strength and hardness, where the fracture strength was \(6.57\) N/mm\(^2\) and the hardness was \(87.4\) Kg/mm\(^2\).

References

[7] www.icsucopere.org/downloadpubs/scope54/frossard.htm retrieved at march 2006

[12] Gerd Willman: Coating of implants with Hydroxyapatite material connection between bone
Effect of Sintering Temperature On Some Physical And Mechanical Properties of Fabricated Hydroxyapatite Used For Hard Tissue Healing

Table (1) illustrates the identity of hydroxyapatite.

<table>
<thead>
<tr>
<th>Chemical formula</th>
<th>Ca_{10}(PO_4)_{6}(OH)_2</th>
<th>Hazard and safety</th>
<th>Non flammable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>HA</td>
<td>Solubility</td>
<td>Soluble in mineral acid</td>
</tr>
<tr>
<td>Melting point(ºC)</td>
<td>1670</td>
<td>Insolubility</td>
<td>Insoluble in water, ethanol, acetic acid.</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>Mol. Wt=1004.69</td>
<td>Porosity</td>
<td>Open, interconnective.</td>
</tr>
<tr>
<td>density</td>
<td>3.08-3.18</td>
<td>Clinical results</td>
<td>Available from 10 years of application.</td>
</tr>
<tr>
<td>Ca/P</td>
<td>1.67</td>
<td>Mineral phase</td>
<td>CaO<1% , TCP<1%</td>
</tr>
<tr>
<td>Mohs hardness</td>
<td>5</td>
<td>Implant bone</td>
<td>Enabling the establishment of positive material connection.</td>
</tr>
<tr>
<td>refractive index</td>
<td>1.63</td>
<td>biocompatibility</td>
<td>Bioactive, osteoconductive</td>
</tr>
<tr>
<td>Solubility constant K_s at 25 ºC</td>
<td>6.62*10^{-126}</td>
<td>Crystal structure</td>
<td>Hexagonal a=b=9.432, c=6.881</td>
</tr>
<tr>
<td>synonyms</td>
<td>Tricalcium phosphate, tricalcium orthophosphate tribasic calcium phosphate, bone ash.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effect of Sintering Temperature On Some Physical And Mechanical Properties of Fabricated Hydroxyapatite Used For Hard Tissue Healing

Figure (1) shows the particle shape of fabricated HA

(a) 900°C
(b) 900°C
(c) 1000°C
(d) 1100°C

Figure (2) EM pictures of sintered HA powder compact at different Sintering temperatures and at a magnification of (X63).

1889
Effect of Sintering Temperature On Some Physical And Mechanical Properties of Fabricated Hydroxyapatite Used For Hard Tissue Healing

Figure (3) shows the effect of sintering temperature on linear shrinkage of sintered (HA) powder compact.

Figure (4) shows the effect of sintering temperature on apparent density.

Figure (5) shows the effect of sintering temperature on Bulk density of sintered (HA) powder compact.

Figure (6) shows the effect of sintering temperature on apparent porosity% of sintered (HA) powder compact.
Effect of Sintering Temperature On Some
Physical And Mechanical Properties of
Fabricated Hydroxyapatite Used
For Hard Tissue Healing

Figure (7) shows the effect of sintering temperature
On open porosity% of sintered (HA) powder compact.

Figure (8) shows the effect of sintering temperature
on water absorption of sintered (HA) powder compact.

Figure (9) shows the effect of sintering temperature or
Fracture strength of sintered (HA) powder compact.

Figure (10) shows the effect of sintering temperature or
Hardness of sintered (HA) powder compact.
Effect of Sintering Temperature On Some Physical And Mechanical Properties of Fabricated Hydroxyapatite Used For Hard Tissue Healing

Appendix (2-a to e) shows x-ray patterns for Hydroxyapatite powder compact samples at temperature range (800-1200)°C.