Eng. \& Tech. Journal, Vol.2s, No.10, 2010

Least Squares Method For Solving Integral Equations With Multiple Time Lags

Dr.Suha N. Shehab*, Hayat Adel Ali*
\& Hala Mohammed Yaseen*
Received on:26/10/2009
Accepted on:11/3/2010

Abstract

The main purpose of this work is to propose an approximate method to solve integral equation with multiple time lags (IEMTL) namely least squares method with aid of Chebyshev polynomials of (first, second, third, and fourth)kinds. Example is given as an application of least squares method with aid of four kinds of Chebyshev polynomials.

Keywords:-Integral Equation, time lag, Least squares method, Chebychev polynomials

الخلاصة

التجاطؤتسمى بطريقة المربعات الصغرى بأستخدام متعددات حدود شبيشيف للانواع (الاولى , الثانيـــة
الثالثة والر ابعة) .أعطاء مثال كتطبيق لطريقة المربعات الصغرى مع أنو اع متعددات حـــود شبيشـــيف

1. Introduction

The most recent kind of equation that worth studying is the delay integral equation. These equations have many applications like: a model to explain the observed periodic out breaks of certain infection diseases [12]. Another application is the electromagnetic inverse scattering problem in a medium with discontinuous change in conductivity [3].
It will be necessary to give simple information about the integral equation with multiple time lags.

2. Integral Equations with Multiple Time Lags [4, 5, 9]

The significance of these equations lies in ability to describe processes with retarded (delay) time which may appear in the unknown function $f(t)$ involved in the integrand or may appear in the unknown function $f(t)$ in the left hand side of the equation or may appear in one of the limits of the integrations.
The integral equation with multiple time lags (which have two lags τ_{1} and τ_{2} such that $\tau_{1}, \tau_{2} \in R, \tau_{1}$ and $\tau_{2}>0$) having the following cases:-

- If τ_{1} appears in the unknown function $f(t)$ inside the integral sign and τ_{2} appears in the unknown function $f(t)$ out side the integral sign such that

$$
\begin{equation*}
h(t) f\left(t-\tau_{2}\right)=g(t)+\int_{a}^{b(t)} k(t, y) f\left(y-\tau_{1}\right) d y \tag{1}
\end{equation*}
$$

- If τ_{1} appears in the unknown function $f(t)$ inside the integral sign and τ_{2} appears in one of the limits of integration

$$
\begin{equation*}
h(t) f(t)=g(t)+\int_{a}^{\tau_{2}} k(t, y) f\left(y-\tau_{1}\right) d y \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
h(t) f(t)=g(t)+\int_{\tau_{2}}^{b(t)} k(t, y) f\left(y-\tau_{1}\right) d y \tag{3}
\end{equation*}
$$

- If τ_{1} appears in the unknown function $f(t)$ outside the integral sign and τ_{2} appears in one of the limits of integration:-

$$
\begin{equation*}
h(t) f\left(t-\tau_{1}\right)=g(t)+\int_{a}^{\tau_{2}} k(t, y) f(y) d y \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
h(t) f\left(t-\tau_{1}\right)=g(x)+\int_{\tau_{2}}^{b(t)} k(t, y) f(y) d y \tag{5}
\end{equation*}
$$

Remarks [1, 5, 6]:

1. If $h(t)=0$ these equations are called integral equation with multiple time lags of the first kind.
2. If $h(t)=1$ the equations are called integral equation with multiple time lags of the second kind
3. If $\mathrm{g}(\mathrm{t})=0$ these equations are called homogenous integral equations with multiple time lags otherwise if $\mathrm{g}(\mathrm{t} \not \equiv 0$ the equation are called non homogenous integral equation with multiple time lags.
4. If $b(t)=t$ the integral equation is called Volterra integral equation with time lag otherwise when $(b(t)=b, b$ is a constant) it is called Fredholm integral equation with time lag.
5. Chebyshev Polynomials [8, 10]:-

Chebyshev polynomials are of great importance in many area of mathematics particularly approximation theory. Numerous articles and books have been written about this topic. There are several kinds of Chebyshev polynomials. In particular we shall introduce the first, second, third and fourth kind of Chebyshev polynomials.
Some books and many articles use the expression Chebyshev polynomial to refer exclusively to the Chebyshev polynomial $T_{n}(x)$ of the first kind. Indeed this is by far the most important of the Chebyshev polynomials and when no other qualification is given.
Clearly some definition of Chebyshev polynomials is needed right away so a choice of definitions. However, what gives the various polynomials their power and relevance is their close relationship with the trigonometric functions 'cosine' and 'sine'. It must be a ware of the power of these functions and of their appearance in the description of all kinds of natural phenomena, and this must surely be
the key to the versatility of Chebyshev polynomials. It will be necessary to make some primary definitions of these trigonometric relationships.
3.1 The First- Kind Chebyshev Polynomials $T_{n}(x)$ [2]

The Chebyshev polynomial $T_{n}(x)$ of the first kind is a polynomial in x of degree n, and rang of the variable x in the interval $[-1,1]$ then it will be defined by the relation.
$T_{n}(x)=2 x T_{n-1}(x)-T_{n-2}(x) \quad n=2,3, \ldots$
which may readily show that.
$T_{0}(x)=1, T_{1}(x)=x, T_{2}(x)=2 x^{2}-1, T_{3}(x)=4 x^{3}-3 x, \quad T_{4}(x)=8 x^{4}-8 x^{2}+1$
which together with the initial conditions

$$
\begin{align*}
& T_{0}(x)=1 \tag{8}\\
& \quad T_{1}(x)=x \tag{9}
\end{align*}
$$

3.2 The Second- kind Chebyshev

Polynomial $U_{n}(x)[8,11]$
The Chebyshev polynomial $U_{n}(x)$ of the second kind is a polynomial of degree n in x and range same as for $T_{n}(x)$ defined by the recurrence

$$
\begin{align*}
& U_{n}(x)=2 x U_{n-1}(x)-U_{n-2}(x) \tag{10}\\
& \text { with } \quad U_{0}(x)=1, U_{1}(x)=2 x
\end{align*}
$$

so we deduce that
$U_{0}(x)=1, U_{1}(x)=2 x, U_{2}(x)$
$=4 x^{2}-1, U_{3}(x)=8 x^{3}-4 x$
3.3 The Third and Fourth -kind Chebyshev Polynomial $V_{n}(x)$ and $\mathbf{W}_{\mathbf{n}}(\mathbf{x})$ (the airfoil polynomial) [8]

Two other families of polynomials $\mathrm{V}_{\mathrm{n}}(\mathrm{x})$ and $\mathrm{W}_{\mathrm{n}}(\mathrm{x})$ may be
constructed, which are related to $T_{n}(x)$ and $\mathrm{U}_{\mathrm{n}}(\mathrm{x})$, but which have trigonometric definitions involving the half angle $\theta / 2$ (where $x=\cos \theta$ as before).These polynomials are same time referred to as the 'airfoil polynomials', which is rather a appropriately named third and fourthkind Chebyshev polynomials.

3.3.1 The Chebyshev polynomials

 $V_{n}(x)$ and $W_{n}(x)$ of the third and fourth kinds are polynomials of degree n in x :-These polynomials too may be efficiently generated by the use of a recurrence relation.
$V_{n}(x)=2 x V_{n-1}(x)-V_{n-2}(x)$
with $\quad V_{0}(x)=1, V_{1}(x)=2 x-1$
$W_{n}(x)=2 x W_{n-1}(x)-W_{n-2}(x)$
with $W_{0}(x)=1, W_{1}(x)=2 x+1$
where $\mathrm{n}=2,3,4, \ldots$
we may readily show that
$V_{0}(x)=1, V_{1}(x)=2 x-1, V_{2}(x)=4 x^{2}-2 x-1, V_{3}(x)$
$=8 x^{3}-4 x^{2}-4 x+1$
and
$W_{0}(x)=1, W_{1}(x)=2 x+1, W_{2}(x)$
$=4 x^{2}+2 x-1, W_{3}(x)=8 x^{3}+4 x^{2}-4 x-1, \ldots$

Thus $\quad V_{n}(x)$ and $W_{n}(x)$ share precisely the same recurrence relation as $T_{n}(x), U_{n}(x)$ and their generation differs only in the prescriptions of the initial condition $\mathrm{n}=1$.

4. Chebyshev Polynomials for the

 General Range $[a, b]$ [8]For more generally Chebyshev polynomials may define appropriate to any given finite range $[a, b]$ of x , by making this range correspond to the range $[-1,1]$
of a new variable t under the linear transformation

$$
t=\frac{2 x-(a+b)}{b-a}
$$

4.1 Shifted Chebyshev Polynomials

 [8]:-The shifted polynomials $T_{n}^{*}(x), U_{n}^{*}(x), V_{n}^{*}(x), W_{n}^{*}(x) \quad$ since the range $[0,1]$ is quite often more convenient to use tan the range $[-1,1]$ we sometimes map the independent variable x in $[0,1]$ to the variable t in $[-1,1]$ by the transformation
$t=2 x-1 \quad$ or $\quad x=\frac{1}{2}(t+1)$
and this lead to a shifted polynomial (of the first kind) $T_{n}^{*}(x)$ of degree n in x on $[0,1]$ given by

$$
\begin{equation*}
T_{n}^{*}(x)=T_{n}(t)=T_{n}(2 x-1) \tag{13}
\end{equation*}
$$

The recurrence relation for T_{n}^{*} may deduce in the form
$T_{n}^{*}(x)=2(2 x-1) T_{n-1}^{*}(x)-T_{n-2}^{*}(x) \cdots$ (14)
with the initial conditions

$$
\begin{equation*}
T_{0}^{*}(x)=1, \quad T_{1}^{*}(x)=2 x-1 \tag{15}
\end{equation*}
$$

shifted
polynomials $U_{n}^{*}(x), V_{n}^{*}(x), W_{n}^{*}(x)$ of the second, third and fourth kinds may be defined in precisely analogous ways:-

$$
\begin{gather*}
U_{n}^{*}(x)=U_{n}(2 x-1) \\
V_{n}^{*}(x)=V_{n}(2 x-1), \\
W_{n}^{*}(x)=W_{n}(2 x-1) \tag{16}
\end{gather*}
$$

5. The Least Squares Method for Solving IEMTL [3, 7]:-

This method is one of the approximate methods used to solve
the integral equations without time lag.
This method can be used to find an approximate solution for the integral equations with multiple time lags. To do this, consider the linear Fredholm integral equation with multiple time lags:-

$$
\begin{equation*}
f\left(t-\tau_{1}\right)=g(t)+\int_{a}^{b} k(t, y) f\left(y-\tau_{2}\right) d y \tag{17}
\end{equation*}
$$

This method is based on approximating the unknown function f as:-

- $f(t) \cong \sum_{i=0}^{n} c_{i} Q_{i}(t)$
where $Q_{i}(t)$ is chosen to be one of the four kind of chebyshev polynomials $\quad\left(T_{i}(t), U_{i}(t)\right.$,
$V_{i}(t)$ or $W_{i}(t)$
by substituting these solutions into equ. (17). One can obtain
$\sum_{i=0}^{n} c_{i} Q\left(t-\tau_{1}\right)-g(t)-\int_{a}^{b} k(t, y)\left[\sum_{i=1}^{n} c_{c} Q\left(y-\tau_{2}\right)\right] d y=R\left(t, c_{0}, c_{1}, c_{2}, \ldots c_{n}\right)$
let
$M\left(c_{0}, c_{1}, \ldots, c_{n}\right)=\int_{a}^{b}\left[R\left(t, c_{0}, c_{1}, \ldots, c_{n}\right]^{2} w(t) d t\right.$
Where $\mathrm{w}(\mathrm{t})$ is any positive function defined on the interval $[a, b]$. It is usually called the weight function. In this work we take $w(t)=1$ for simplicity.
Thus
$\left.M\left(c_{0}, c_{1}, \ldots \mathcal{C}_{n}\right)=\int_{a}^{b} \sum_{i=0}^{n} c_{i} Q\left(t-\tau_{1}\right)-g(t)-\int_{a}^{b} k(t, y)\left[\sum_{i=0}^{n} c_{i} Q\left(y-\tau_{2}\right)\right] d y\right]^{2} d t$
So, finding the values of c_{i} $\mathrm{i}=0,1,2, \ldots, \mathrm{n}$ which minimize M is
equivalent to finding the best approximation for the solution of the integral equation given by eq.(17).
The minimum value of M is obtained by setting:-

$$
\frac{\partial M}{\partial c_{j}}=0, \mathrm{j}=0,1,2, \ldots, \mathrm{n}
$$

 ; therefore
$\int_{a}^{b} R\left(t, c_{0}, c_{1}, \ldots, c_{n}\right)\left\{Q_{j}\left(t-\tau_{1}\right)-\int_{a}^{b} k(t, y) Q_{j}\left(y-\tau_{2}\right) d y\right\} d t=0$
By evaluating the above equation for $j=0,1, \ldots, n$ one can obtain a system of $\mathrm{n}+1$ linear equations with $\mathrm{n}+1$ unknown c_{i} 's. This system can be formed by using matrices form as follows:

$$
\begin{aligned}
& \mathrm{A}= \\
& {\left[\begin{array}{llll}
\int_{a}^{b} R\left(t, c_{0}\right) h_{0} d t & \int_{a}^{b} R\left(t, c_{1}\right) h_{0} d t & \mathrm{~L} & \int_{a}^{b} R\left(t, c_{n}\right) h_{0} d t \\
\int_{a}^{b} R\left(t, c_{0}\right) h_{1} d t & \int_{a}^{b} R\left(t, c_{1}\right) h_{1} d t & \mathrm{~L} & \int_{a}^{b} R\left(t, c_{n}\right) h_{1} d t \\
\int_{a}^{b} & \mathrm{M} & \mathrm{M} & \mathrm{O} \\
\int_{a}^{b} R\left(t, c_{0}\right) h_{n} d t & \int_{a}^{b} R\left(t, c_{1}\right) h_{n} d t & \mathrm{~L} & \int_{a}^{b} R\left(t, c_{n}\right) h_{n} d t
\end{array}\right]} \\
& , b=\left[\begin{array}{l}
\int_{a}^{b} g(t) h_{0} d t \\
\int_{a}^{b} g(t) h_{1} d t \\
\int_{a}^{b} g(t) h_{n} d t
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& h_{j}=Q_{j}\left(t-\tau_{1}\right)-\int_{a}^{b} k(t, y) Q_{j}\left(y-\tau_{2}\right) d y \\
& \quad \mathrm{j}=0,1,2, \ldots, \mathrm{n} \\
& \text { and }
\end{aligned}
$$

$$
\begin{gathered}
\int_{a}^{b} \sum_{i=0}^{n} c_{i} Q_{i}\left(t-\tau_{1}\right)-\int_{a}^{b} k(t, y)\left[\sum_{i=0}^{n} c_{i} Q_{i}\left(y-\tau_{2}\right)\right] d y \\
=R\left(t, c_{i}\right)
\end{gathered}
$$

for $\quad i=0,1, \ldots, n$

By solving the above system using Gauss elimination method to get an approximation solution to the equ.(17).

6. Numerical Example:-

Consider the Volterra integral equation with multiple time lags $f\left(t-\tau_{1}\right)=$

$$
\left((t-1)^{2}-\frac{1}{4} t\left(t^{4}-1\right)-\frac{1}{2} t\left(t^{2}-1\right)\right)+\int_{\tau_{2}}^{t} t y f(y) d y \quad t \in[1,2]
$$

Where $\tau_{1}=1$ and $\tau_{2}=1$ with the exact solution $f(t)=\left(t^{2}+1\right)$
Assume that the approximate solution is

1. $f(t) \cong f_{2}(t)=\sum_{i=0}^{2}{ }^{\prime} c_{i} T_{i}(2 t-3)$
2. $f(t) \cong f_{2}(t)=\sum_{i=0}^{2}{ }^{\prime} c_{i} U_{i}(2 t-3)$
3. $f(t) \cong f_{2}(t)=\sum_{i=0}^{2} c_{i} V_{i}(2 t-3)$
4. $f(t) \cong f_{2}(t)=\sum_{i=0}^{2}{ }^{\prime} c_{i} W_{i}(2 t-3)$

The least squares method with shifted Chebychev $\left(1^{\text {st }}, \quad 2^{\text {nd }}, \quad 3^{\text {rd }}, \quad 4^{\text {th }}\right)$ approximation used to solve this problem. Their results are obtained by using matlab program. The following table(1) shows a comparison between the exact and the approximated results by absolute error (Abs.E) and least square error (L.S.E) between the methods.

6. Conclusions

1. The results obtained by using least squares method are very accurate in a comparison with the exact solution of worked examples.
2. If we were asked for a pecking order of these four chebyshev polynomials
$T_{n}(x), U_{n}(x), V_{n}(x), W_{n}(x)$ then we say:-
(a) $T_{n}(x)$ is clearly the most important and $T_{n}(x)$ generally leads to simplest formulae, whereas results for the other polynomials may involve slight complications.
(b) All four polynomials have their role. For example $U_{n}(x)$ is useful in numerical integration, while $V_{n}(x)$ and $W_{n}(x)$ can be useful in situations in which singularities occur at one end points $(+1$ or -1$)$ but not at the other.
3. The results and the required duration of the least squares method with the aid of four kinds of chebyshev polynomials ($\mathrm{f}^{\text {t }}, 2^{\text {nd }}, 3^{\text {rd }}$, $4^{\text {th }}$) declare that the least square method with aid of ($3^{\text {rd }}, 4^{\text {th }}$) kinds gives more accurate results than the others.
4. A disadvantage of the least squares method with aid of four kinds of chebyshev polynomials its dependence on a free parameter (n) which gives the smallest least square error.

References

[1] Abdul Khaliqe, E. M., "Numerical Techniques for Special Type of Integral Equations" M.Sc. Thesis.

College of Applied Science, University of Technology, 2004
[2] Akyuz- Dascioglu, A."Chebyshev polynomial solutions of systems of linear integral equations" Applied Mathematics and computation vol. 113(2003),pp.25-56.
[3] AL- Bayati B.A, "The Expansion Methods For Solving The Two Dimensional Delay Integral Equations" M.Sc., Thesis, College of Education Ibn- AL- Haitham of Baghdad University, 2005
[4] Akram H., "About the singular operator in integral equations" M. Sc., Thesis, College of science ALNahrain University, 1999
[5] Burton T., "Integral Equations With Delay" Acta Math. Hung. 72, No. 3, pp. 233-242. 1996
[6] Gardi, N. A. S. "New Techniques in the Numerical Solution of Fredholm and Volterra Integral Equations" PH. D. Thesis, University of Salahaddin / Howler- College of Education, 1999
[7]Hildbrand F., "Methods of Applied Mathematics ", $2^{\text {nd }}$ edition prentice- Hall, 1965.
[8] John C. Mason "Chebyshev Polynomials" Boca Raton London
Newyork Washington, D. C. 2003 by CRC press LLC.
[9] Kureger R., "Some Results On Linear Delay Integral equations" J. of Math. Anal. \& Appl.67, pp.232- 238, 1979
[10] "Orthogonal Polynomials" http://mathword.
Wo/fram.com/Orthognal polynomials Htm
[11] Paul S. Wang., "Factorization Of Chebyshev Polynomials" Depart. Of Mathematics and Comp. Science. Kent. Edu. 1998
[12] Smith H. "on Periodic Solutions of Delay Integral equations Modeling Epilemics"J. Math Biology 4,pp.6980,1977.

Table (1)

t	Exact	Least Square							
		$\begin{gathered} \text { first } \\ \text { Cheby } \end{gathered}$	Abs error	second Cheby	Abs error	third Cheby	Abs error	fourth Cheby	Abs error
1	2	1.9701	0.0299	1.9633	0.0367	2.0067	0.0067	2.000	0.0000
1.1	2.21	2.1819	0.0281	2.1747	0.0353	2.2164	0.0064	2.2101	0.0001
1.2	2.44	2.41399	0.02601	2.4072	0.0328	2.4459	0.0059	2.4400	0.0000
1.3	2.69	2.667	0.023	2.6608	0.0292	2.6952	0.0052	2.6901	0.0001
1.4	2.96	2.9407	0.0193	2.9354	0.0246	2.9643	0.0043	2.9600	0.0000
1.5	3.25	3.2458	0.0042	3.23105	0.01895	3.2533	0.0033	3.2500	0.0000
1.6	3.56	3.5509	0.0091	3.5478	0.0122	3.5620	0.002	3.5601	0.0001
1.7	3.89	3.8873	0.0027	3.8856	0.0044	3.8906	0.0006	3.8900	0.0000
1.8	4.24	4.2446	0.0046	4.2444	0.0044	4.2389	0.0011	4.2401	0.0001
1.9	4.61	4.6227	0.0127	4.6243	0.0143	4.6071	0.0029	4.6100	0.0000
2	5.00	5.0217	0.0217	5.0253	0.0253	4.9951	0.0049	5.0000	0.0000
L.S.E		$4.023 \mathrm{e}-3$		$6.518 \mathrm{e}-3$		2.15e-4		4E-08	

Figure (1) shows the comparison between these results

