The Artin's Exponent of A Special Linear Group SL(2,2 $\left.\mathbf{z}^{\mathbf{k}}\right)$

Dr.Mohammed Serdar I.Kirdar* \& Lemia Abd Alameer Hadi*

Received on:24/2/2009
Accepted on:4/6/2009

Abstract

The set of all $\mathrm{n} \times \mathrm{n}$ non singular matrices over the field F form a group under the operation of matrix multiplication, This group is called the general linear group of dimension n over the field F , denoted by $\mathrm{GL}(\mathrm{n}, \mathrm{F})$. The subgroup from this group is called the special linear group denoted by $\operatorname{SL}(\mathrm{n}, \mathrm{F})$. We take $\mathrm{n}=2$ and $\mathrm{F}=2^{\mathrm{k}}$ where k natural, $\mathrm{k}>1$. Thus we have $\operatorname{SL}\left(2,2^{\mathrm{k}}\right)$. Our work in this thesis is to find the Artin's exponent from the cyclic subgroups of these groups and the character table of it's. Then we have that: a $\operatorname{SL}\left(2,2^{k}\right)$ is equal to 2^{k-1}.

Keywords: Linear Group, Special Group, Exponent.
"اس ارتن للزمر الخطية الخاصة SL(2,2T)"

أن مجموعة كل المصفوفات الشاذة على الحقل F تشكل زمرة تحت العــــــلـية الثـائيـــة ض ويرمز لها ولا الزمرة الجزئية من هذه الزمرة تنمى الزمرة الخطية الخاصة ويرمز لها بالرمز الجزئبة الخاصة في هذا العمل حاولنا إيجاد أس ارتن لهذه الزمرة من الزمر الجزئية الائرية لها ، كمـــا وقمنـــا بايجاد جداول الكاركتر (Character Table) لمجو عة من الزمر الجزئية الخاصة (2,2k) ولقد حصلنا على النتيجة النالية : $\mathrm{a}\left(\mathrm{SL}\left(2,2^{\mathrm{k}}\right)\right)=2^{\mathrm{k}-1}$	

1-Introduction

In this work our focus will lie on the representation and character theory of finite groups. $\mathrm{R}(\mathrm{G})$ is the group of all rational valued characters of G under point - wise addition, and $\mathrm{T}(\mathrm{G})$ is the group generated by the induced characters from the principal characters of certain subgroups of G satisfying the
three conditions of Solomon theorem .Solomon theorem states that the factor group $\mathrm{R}(\mathrm{G}) / \mathrm{T}(\mathrm{G})$ has a finite exponent dividing $|\mathrm{G}|$. E-Artin in (1927) proved that every rationally valued character of G is rational sum of representation character of G , or in other words, the exponent of $\mathrm{R}(\mathrm{G}) / \mathrm{T}(\mathrm{G})$ is finite.

[^0]In (1968) Lam proved a sharp form of Artin's theorem, he determined that the least positive integer $A(G)$ such that $A(G) x$ is an integral linear combination of the induced principal characters of cyclic subgroups, for any rational valued character χ of $\mathrm{G}, \mathrm{A}(\mathrm{G})$ is called the Artin exponent of G . In his paper, he studied $\mathrm{A}(\mathrm{G})$ extensively for many groups. He has shown that $\mathrm{A}(\mathrm{G})$ can be evaluated by knowing the Artin characters of G and that $A(G)$ is equal to one if and only if G is cyclic.

Now, This thesis concentrates on the constructing of the character table of the irreducible rational representation and Artin's characters induced from all cyclic subgroups of $\operatorname{SL}\left(2,2^{k}\right)$ where k natural number, $\mathrm{k}>1$. We have found in this work that: $\mathrm{a}\left(\mathrm{SL}\left(2,2^{\mathrm{k}}\right)\right)=2^{\mathrm{k}-1}$.

2- Representation Theory
 Definition (2.2), [1, 9]

The set of all $\mathrm{n} \times \mathrm{n}$ non- singular matrices over the field $\$$ of complex number under the operation of matrix multiplication is called the general linear group of dimension \mathbf{n} over the field Φ denoted by GL(n, \downarrow).

Definition (2.3), [11]

Let $\mathrm{R}: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{n}, \mathrm{¢})$ be a matrix representation of G, then R is said to be reducible if for any $x \in G, R(x)$ is equivalent to a matrix of the form

$$
\mathrm{M}^{-1} \mathrm{R}(\mathrm{x}) \mathrm{M}=\left(\begin{array}{ll}
R_{1}(x) & E(x) \\
0 & R_{2}(x)
\end{array}\right), \forall x \in G
$$

where $R_{1}(x), R_{2}(x)$ are two representations of G. $\mathrm{R}_{1}(\mathrm{x}), \mathrm{R}_{2}(\mathrm{x})$, and $\mathrm{E}(\mathrm{x})$ are matrices over ϕ of dimensions $\mathrm{r} \times \mathrm{r}$,
${ }^{\mathrm{s} \times \mathrm{s}}$ and
$(\mathrm{n}-\mathrm{r})(\mathrm{n}-\mathrm{s})$ respectively, such that $0<\mathrm{r}$
$<\mathrm{n}$ and $\mathrm{r}+\mathrm{s}=\mathrm{n}$ Otherwise then the
representation is called irreducible
Remark (2.4):
Any one dimensional
representation is irreducible.

3. Character Theory

Definition (3.1), [8]:
Let $\quad \mathrm{R}: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{n}, \mathrm{\phi}) \quad \mathrm{a}$ representation of G. the complex valued function $\mathrm{X}: \mathrm{G} \rightarrow \mathrm{G}$ defined by $\chi(\mathrm{x})=\operatorname{Trace}(\mathrm{R}(\mathrm{x}))$ is called the character of \mathbf{x} afforded by the representation

Definition (3.2), [5,7] :

Let x, y be two elements of a group G , then we said that x, y be conjugate if $\exists \mathrm{g} \in \mathrm{G}$ such that $\mathrm{g}^{-1} \mathrm{xg}$

$$
=y
$$

Definition (3.3), [10,16]:

Let G be a finite group, $\mathrm{F}: \mathrm{G} \rightarrow \mathrm{\Phi}$ which is constant on the conjugate classes of G is called class function .

4. Induced characters [5]:

Definition (4.1), [8]:
Let $\mathrm{H} \leq \mathrm{G}$ and $\mathrm{X}: \mathrm{H} \rightarrow \mathrm{C}$ is a character (or any class function). Then the induced character

$$
\operatorname{Ind}_{H}^{G} \quad X(g) \sum_{h \in G} X\left(h g h^{-1}\right)=
$$

(1/|H|)
where $\mathrm{X}(\mathrm{g})=0$ if $\mathrm{g} \not \mathrm{H}$
Definition (4.2), [10]:
The least integer $A(G)$ such that $\mathrm{A}(\mathrm{G}) \Phi$ is an integral linear combination of the induced principal characters of the cyclic subgroup of G, for all rational valued characters Φ of $G, A(G)$ is called the Artin exponent of G.

Definition (4.3), [4]:

The integer linear combination of arbitrary character induced from the cyclic subgroups of $G, a(G)$ is determined as the least integer such that $a(G) X$ is an integral linear combination of characters induced from cyclic subgroups of G, for all character X of G .

Notation:

The character induced from the characters of its cyclic subgroups of G is called Artins exponent
5. Artin exponent $\mathbf{a}(\mathbf{G})$ of finite groups:
Definition (5.1), [6]:
If $\langle t\rangle$ is a cyclic subgroup of G we define $n(t)=n(\langle t\rangle)$ to be the number of subgroup <s>of <t> such that $\left.\mathrm{N}_{\mathrm{G}}<\mathrm{s}>/ \mathrm{C}_{\mathrm{G}}<\mathrm{s}\right\rangle$ is non trivial.

Theorem (5.2): (Main Theorem)

Let G be a non cyclic group of order P^{n}. Let $\mathrm{k} \geq 0$. The following conditions are necessary and sufficient that $a(G) \leq \mathrm{P}^{\mathrm{k}}$.

1) For each element χ of order P in
$\mathrm{G}, \mathrm{a}\left(\mathrm{N}_{\mathrm{G}}(\langle\chi>) /<\chi>) \leq \mathrm{P}^{\mathrm{k}}\right.$
2) For each element χ of order P in G, there exists
a cyclic subgroup <t>
containing $\langle\chi\rangle$ such that
$\mathrm{n}(\mathrm{t}) \geq \mathrm{m}-\mathrm{k}-1$, where
$\left|\mathrm{N}_{\mathrm{G}}<\chi>\right|=\mathrm{P}^{\mathrm{m}}$.

Proof:

See [6].
Definition (5.3), [6]:
Let G be a finite group, the integral linear combination of arbitrary characters induced from the cyclic subgroups of G is called Artin's exponent of G and denoted by a(G).

Definition (5.4), [6]:

Let G be a finite group, the least integer such that $a(G) X$ is an integral linear combination of characters induced from cyclic subgroup of G, for all characters X of G.
6. The Special Linear Group:

Definition (6.1), [1, 5, 9,]:
The general linear group of degree \mathbf{n} in the set of $n \times n$ invertible (non singular) matrices, together with the operation of ordinary matrix multiplication. These form a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible.
Definition (6.2), [2] :
The general linear group over the field \mathbf{F} is the group of $\mathrm{n} \times \mathrm{n}$ invertible matrices denoted by $\mathrm{GL}(\mathrm{n}, \mathrm{F})$. the determination of these matrices is a homomorphism from $\mathrm{GL}(\mathrm{n}, \mathrm{F})$ into F^{*}. Thus $\mathrm{SL}(\mathrm{n}, \mathrm{F})$ is the subgroup of $G L(n, F)$ which contains all matrices of determinate one and it is called special linear group .

Theorem (6.3):

Let $\mathrm{G}=\mathrm{SL}\left(2,2^{\mathrm{k}}\right)$ has exactly $\left(2^{\mathrm{k}}+1\right)$ conjugacy classes C_{g} for $g \in$ Gas the table (1).

Proof:

See [5].
7.The Artin Exponent $\mathbf{a}(\mathbf{G})$ of SL($2,2^{k}$):
Theorem (7.1):
Let $\mathrm{G}=\mathrm{SL}\left(2,2^{\mathrm{k}}\right), \mathrm{k}=$ natural, $\mathrm{k}>1$. Then $\mathrm{a}(\mathrm{G})=2^{\mathrm{k}-1}$ and the table of characters induced from the characters of all its cyclic subgroups see table (2).

Proof:

\mid SL $\left(2,2^{\mathrm{k}}\right) \mid=2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right)$ (by lemma (3.2.6))

From theorem (3.4.5.), $G=\operatorname{SL}\left(2,2^{\mathrm{k}}\right)$ has exactly $\left(2^{\mathrm{k}}+1\right)$ conjugacy classes C_{g} for $g \in G$ see table (3).
where:-
$1 \leq \ell \leq\left(2^{\mathrm{k}}-2\right) / 2$ and $1 \leq \mathrm{m} \leq$ $2^{\mathrm{k}} / 2$

By the definition of inducing we obtained the induced characters $\Phi_{1}, \Phi_{2}, \Phi_{3}$ and Φ_{4} of $\operatorname{SL}\left(2,2^{\mathrm{k}}\right)$ from the characters of all cyclic subgroups see table(4):-
Then we have the following table see table(5) :
By multiply Φ_{4} by -1 we get:

$$
-\ell\left(2^{\mathrm{k}}\left(2^{\mathrm{k}}+1\right)\right)
$$

By multiply Φ_{3} by -1 we get:

$$
-\mathrm{m}\left(2^{\mathrm{k}}\left(2^{\mathrm{k}}-1\right)\right)
$$

By multiply Φ_{2} by - $\left(1 / 2^{\mathrm{k}-1}\right)$ we get:
$-1 / 2^{\mathrm{k}-1} \Phi_{2}=-\left(2^{\mathrm{k}-1}\left(2^{2 \mathrm{k}}-1\right) / 2^{\mathrm{k}-1}\right)=-\left(2^{2 \mathrm{k}}-\right.$ 1)

And then adding the result to $\Phi 1=2^{k}$
$\left(2^{2 k}-1\right)$ we get:
$-\mathrm{m} 2^{\mathrm{k}}\left(2^{\mathrm{k}}-1\right)-\ell 2^{\mathrm{k}}\left(2^{\mathrm{k}}+1\right)-\left(2^{2 \mathrm{k}}-1\right)$
$+2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right)$

$$
=-2^{\mathrm{k}} / 2\left(2^{\mathrm{k}}\left(2^{\mathrm{k}}-1\right)\right)-\left(\left(2^{\mathrm{k}}-2\right) / 2\right) 2^{\mathrm{k}}
$$

$$
\left(2^{\mathrm{k}}+1\right)-2^{2 \mathrm{k}}+1+2^{3 \mathrm{k}}-2^{\mathrm{k}}
$$

$$
=-2^{2 \mathrm{k}-1}\left(2^{\mathrm{k}}-1\right)-2^{2 \mathrm{k}-1}\left(2^{\mathrm{k}}+1\right)+2^{\mathrm{k}}\left(2^{\mathrm{k}}+1\right)
$$

$$
+2^{3 \mathrm{k}}-2^{2 \mathrm{k}}-2^{\mathrm{k}}+1
$$

$$
=-2^{3 \mathrm{k}-1}+2^{2 \mathrm{k}-1}-2^{3 \mathrm{k}-1}-2^{2 \mathrm{k}-}
$$

$$
{ }^{1}+2^{2 \mathrm{k}}+2^{\mathrm{k}}+2^{3 \mathrm{k}}-2^{2 \mathrm{k}}-2^{1 \mathrm{k}}+1
$$

$$
=2^{3 \mathrm{k}}\left(-\frac{1}{2}-\frac{1}{2}+1\right)+1=1
$$

Thus $\mathrm{a}\left(\mathrm{SL}\left(2,2^{\mathrm{k}}\right)\right)=2^{\mathrm{k}-1}$.

Example (7.2):

$$
\text { If } \mathrm{k}=2 \Rightarrow \mathrm{G}=\mathrm{SL}\left(2,2^{2}\right) \text { :- }
$$

$\left|\operatorname{SL}\left(2,2^{2}\right)\right|=2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right)=2^{2}\left(2^{4}-1\right)=60$
The conjugacy classes of $\operatorname{SL}\left(2,2^{2}\right)$ is
$2^{\mathrm{k}}+1=2^{2}+1=5$, for $\mathrm{g} \in \mathrm{G}$
$1, \mathrm{c}, \mathrm{a}^{\ell}, \mathrm{b}^{\mathrm{m}}$ where $1 \leq \ell \leq\left(2^{\mathrm{k}}-2\right) / 2 \Rightarrow$

$$
\begin{aligned}
& 1 \leq \ell \leq 1 . \\
& \quad 1 \leq \mathrm{m} \leq 2^{\mathrm{k}} / 2 \Rightarrow 1 \leq \mathrm{m} \leq 2 . \\
& \mathrm{I}=1,\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \mathrm{c}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \\
& \mathrm{a}=\left(\begin{array}{cc}
v^{1} & 0 \\
0 & v^{-1}
\end{array}\right) \\
& |\langle\mathrm{b}\rangle|=\left|\mathrm{F}^{*}\right|=2^{\mathrm{k}}-1
\end{aligned}
$$

where the order of a is $2^{k}-1=2^{2}-1=3$.
Then $\mathrm{e}, \mathrm{e}^{\prime} \leq 3 / 2 \Rightarrow \mathrm{e}=\mathrm{e}^{\prime}=1$
Also the order of b is $2^{\mathrm{k}}+1=2^{2}+1=5$.

Then $\mathrm{f}, \mathrm{f}^{\prime} \leq 5 / 2 \Rightarrow \mathrm{f}=\mathrm{f}^{\prime}=1$.
See table (6) and table (7)
Example (7.3):
If $\mathrm{k}=3 \Rightarrow \mathrm{G}=\mathrm{SL}\left(2,2^{3}\right)$:-
The order of SL $\left(2,2^{3}\right)=$

$$
2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right)=2^{3}\left(2^{6}-\right.
$$

1) $=8 * 63=504$

Have exactly $+1=2^{3}+1=9$ conjugacy classes.
Where $1 \leq \ell \leq 2^{3}-2 / 2 \Rightarrow 1 \leq \ell \leq 3$

$$
\begin{aligned}
& 1 \leq \mathrm{m} \leq 2^{3} / 2 \quad \Rightarrow 1 \leq \mathrm{m} \leq 4 \\
& \Rightarrow 1, \mathrm{c}, \mathrm{a}^{1}, \mathrm{a}^{2}, \mathrm{a}^{3}, \mathrm{~b}^{1}, \mathrm{~b}^{2}, \mathrm{~b}^{3}, \mathrm{~b}^{4}
\end{aligned}
$$

Order of a is $7 \Rightarrow \ell=1$
Order of b is 9 , the divisors of 9 is 1 ,
$3 \Rightarrow f=1,3$ see table (8) and table(9).

References

[1] C. W. Curtis and I. Rainer. "The Representation Theory of Finite Groups".
[2] D. M. Jackson. "Notes on the Representation Theory of Finite Groups", 2004.
[3] Feit W. "Character of Finite Groups", W. A. Benjan, Inc, NewYork 1967.
[4] Games, G. D. and M. W. Liebeck. "Representati onand Characters of

Groups", $\quad 2^{\text {nd }} E d, \quad$ Cambridge University Press, Cambridge, 2001.
[5] Gehles K. "Ordinary
Characters of Finite Special Linear Groups".M.Sc. Dssertation.University of St. Andrews, August 2002.
[6] Gluck, D. "Artin Exponent for Arbitrary Character of Cyclic Subgroups". Journal of Algebra Vol. 61, pp. 58-70 University of Illiois 1979.
[7] Hamed, Dunya M. "Rational Valued Characters of the Special Linear Groups SL(2,2)". M.Sc. Thesis, Collage of Education, University of AL-Mustansiriya, 2006.
[8] Isaacs I. "Character Theory of Finite Groups". Academic press, NewYork, 1976 and Associative

Algebras", John Wiley and Sons, NewYork-London. 1962.
[9] Keown R. "An Introduction To Group Representation Theory", Academic Press NewYork, 1976.
[10] Lam T. "Artin Exponent of Finite Groups". Colombia Univiersity, NewYork. Jornal of Algebra Vol. 9 pp (94-119) 1968.
[11] Lederman, W. "Introduction to Group characters", Cambridge University, 1977.

Table (1) The table of conjugacy classes of $\operatorname{SL}\left(\mathbf{2 , 2}{ }^{\mathrm{k}}\right)$

G	I	C	a^{ℓ}	b^{m}
$\|\mathrm{Cg}\|$	1	$\left(2^{2 \mathrm{k}}-1\right)$	$2^{\mathrm{k}}\left(2^{\mathrm{k}}+1\right)$	$2^{\mathrm{k}}\left(2^{k}-1\right)$
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	$2^{\mathrm{k}}\left(2^{2 \mathrm{k}}+1\right)$	2^{k}	$2^{\mathrm{k}}-1$	$2^{2^{k}+1}$

where:- $1 \leq \ell \leq\left(2^{k}-2\right) / 2$ and $1 \leq m \leq 2^{k} / 2$.

$$
1 \leq \mathrm{I} \leq \frac{2^{k}-2}{2} \quad \text { and } \quad 1 \leq m \leq \frac{2^{k}}{2}
$$

$\operatorname{SL}\left(2,2^{\mathrm{k}}\right)$	1	C	a^{ℓ}	b^{m}
$\left\|\mathrm{C}_{(\mathrm{g})}\right\|$	1	$2^{2 \mathrm{k}}-1$	$2^{\mathrm{k}}\left(2^{\mathrm{k}}+1\right)$	$2^{\mathrm{k}}\left(2^{\mathrm{k}}-1\right)$
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	$2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right)$	2^{k}	$2^{\mathrm{k}}-1$	$2^{\mathrm{k}}+1$
Φ_{1}	$2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right)$	0	0	0
Φ_{2}	$2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right) / 2$	$-2^{\mathrm{k}} / 2$	0	0
Φ_{3}	$\ell\left[2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right) /\left(2^{\mathrm{k}}-1\right)\right]$	0	$-\left(2^{\mathrm{k}}-1\right) /\left(2^{\mathrm{k}} 1\right)$	0
Φ_{4}	$\mathrm{~m}\left[2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right) /\left(2^{\mathrm{k}}+1\right)\right]$	0	0	$-\left(2^{\mathrm{k}}+1\right) /\left(2^{\mathrm{k}}+1\right)$

where:- $1 \leq \ell \leq\left(2^{k}-2\right) / 2$ and $1 \leq m \leq 2^{k} / 2$.

G	1	C	a^{ℓ}	b^{m}
$\|\mathrm{C}(\mathrm{g})\|$	1	$\left(2^{2 k}-1\right)$	$2^{\mathrm{k}}\left(2^{\mathrm{k}}+1\right)$	$2^{\mathrm{k}}\left(2^{\mathrm{k}}-1\right)$
$\left\|\mathrm{G}_{\mathrm{G}}(\mathrm{g})\right\|$	$2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right)$	2^{k}	$\left(2^{\mathrm{k}}-1\right)$	$\left(2^{\mathrm{k}}+1\right)$

SL(2,2k$)$	I	C	a^{ℓ}	b^{m}
Φ_{1}	$2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right)$		0	0
Φ_{2}	$2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right) / 2$	$2^{\mathrm{k} / 2}$	0	0
Φ_{3}	$\ell\left[2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right) /\left(2^{\mathrm{k}}-1\right)\right]$	0	$-\left(2^{\mathrm{k}}-1\right) /\left(2^{\mathrm{k}}-1\right)$	0
Φ_{4}	$\mathrm{~m}\left[2^{\mathrm{k}}\left(2^{2 \mathrm{k}}-1\right) /\left(2^{\mathrm{k}}+1\right)\right]$	0		$-\left(2^{\mathrm{k}}+1\right) /\left(2^{\mathrm{k}}+1\right)$

Table (2) The character table of rational representations of SL ($\mathbf{(2 , 2 ^ { 2 })}$

	I	C	a	b
1_{G}	1	1	1	1
Ψ	4	0	1	-1
χ	5	1	-1	0
θ	6	-2	0	1

Table (3)The table of artin's character of SL ($\mathbf{(2 , 2 ^ { 2 })}$

$\operatorname{SL}\left(2,2^{2}\right)$	I	c	a^{1}	$\mathrm{~b}^{1}$	$\mathrm{~b}^{2}$
$\|\mathrm{Cg}\|$	1	15	20	12	12
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	60	4	3	5	5
Φ_{1}	60	0	0	0	0
Φ_{2}	30	-2	0	0	0
Φ_{3}	20	0	-1	0	0
Φ_{4}	24	0	0	-1	-1

We can see that:-

$$
\Rightarrow \mathbf{a}\left(\mathbf{S L}\left(\mathbf{2}, \mathbf{2}^{2}\right)\right)=\mathbf{2}
$$

Table (4) The character table of rational representations of $\operatorname{SL}\left(\mathbf{2}, \mathbf{2}^{\mathbf{3}}\right)$

$\operatorname{SL}\left(2,2^{3}\right)$	I	C	a	b^{1}	$\mathrm{~b}^{3}$
1_{G}	1	1	1	1	1
Ψ	8	0	1	-1	-1
X	27	3	-1	0	0
θ_{1}	21	-3	0	0	3
θ_{3}	7	-1	0	1	-2

Table (5)The table of artin's characters of $\operatorname{SL}\left(2,2^{3}\right)$

$\operatorname{SL}\left(2,2^{3}\right)$	I	C	a^{1}	a^{2}	a^{3}	b^{1}	b^{2}	b^{3}	b^{4}
$\left\|C_{(g)}\right\|$	63	72	72	72	56	56	56	56	63
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	8	7	7	7	9	9	9	9	8
Φ_{1}	0	0	0	0	0	0	0	0	0
Φ_{2}	-4	0	0	0	0	0	0	0	-4
Φ_{3}	0	-1	-1	-1	0	0	0	0	0
Φ_{4}	$4(56)=224$	0	0	0	0	-1	-1	-1	-1

We can see that:

$-\Phi_{4}:$	-224	0	0	0	0	1	1	1	1
$-\Phi_{3}:$	-216	0	1	1	1	0	0	0	0
$-1 / 4$	-63	1	0	0	0	0	0	0	0
$\Phi_{2}:$									
	-503	1	1	1	1	1	1	1	1
$\Phi_{1}:$	+504	1	1	1	1	1	1	1	1
		1	1	1	1	1	1	1	1
		$\mathbf{a}\left(\mathbf{S L}\left(2,2^{3}\right)\right)=4=2^{3-1}$							

[^0]: * Applied Science Department, University of Technology / Baghdad

