The Artin's Exponent of A Special Linear Group SL(2,2^k)

Dr.Mohammed Serdar I.Kirdar* & Lemia Abd Alameer Hadi*

Received on:24/2/2009 Accepted on:4/6/2009

Abstract

The set of all $n \times n$ non singular matrices over the field F form a group under the operation of matrix multiplication, This group is called the general linear group of dimension n over the field F, denoted by GL(n,F).

The subgroup from this group is called the special linear group denoted by SL(n,F). We take n=2 and F= 2^k where k natural, k>1. Thus we have SL (2,2^t).

Our work in this thesis is to find the Artin's exponent from the cyclic subgroups of these groups and the character table of it's.

Then we have that: a $SL(2,2^k)$ is equal to 2^{k-1} .

Keywords: Linear Group, Special Group, Exponent.

الخلاصة

أن مجموعة كل المصفوفات الشاذة على الحقل F تشكل زمرة تحت العمـلية الثنائية ضرب المصفوفات، هذه الزمرة تسمى الزمرة الخطبة العامة ذات البعد n علي الحقيل F ويرمز لها (GL(n,F. الزمرة الجزئية من هذه الزمرة تسمى الزمرة الخطية الخاصة ويرمز لها بالرمز (SL(n,F) في بحثنا هذااخترنا =2، ،n=2 عدد طبيعي اكبر من الواحد أي سنأخذ الزمرة الحزئية الخاصة (SL(2.2^k) . في هذا العمل حاولنا أيجاد أس ارتن لهذه الزمرة من الزمر الجزئية الدائرية لها ، كما وقمنا بإيجاد جداول الكاركتر (Character Table) لمجموعة من الزمر الجزئية الخاصة (SL(2,2^k) ولقد حصلنا على النتيجة التالية a $(SL(2,2^k))=2^{k-1}$

1-Introduction

In this work our focus will lie on the representation and character theory of finite groups. R(G) is the group of all rational valued characters of G under point - wise addition, and T(G) is the group generated by the induced characters from the principal characters of certain subgroups of G satisfying the

three conditions of Solomon theorem .Solomon theorem states that the factor group R(G)/T(G) has a finite exponent dividing |G|. E-Artin in (1927) proved that every rationally valued character of G is а rational sum of representation character of G, or in other words, the exponent of R(G)/T(G) is finite.

^{*} Applied Science Department, University of Technology / Baghdad

In (1968) Lam proved a sharp form of Artin's theorem, he determined that the least positive integer A(G) such that A(G) χ is an integral linear combination of the induced principal characters of cyclic subgroups, for any rational valued character χ of G, A(G) is called the Artin exponent of G. In his paper, he studied A(G) extensively for many groups. He has shown that A(G) can be evaluated by knowing the Artin characters of G and that A(G) is equal to one if and only if G is cyclic.

Now, This thesis concentrates on the constructing of the character table of the irreducible rational representation and Artin's characters induced from all cyclic subgroups of $SL(2,2^k)$ where k natural number, k>1.We have found in this work that: $a(SL(2,2^k)) = 2^{k-1}$.

2- Representation Theory Definition (2.2), [1, 9]

The set of all $n \times n$ non-singular matrices over the field c of complex number under the operation of matrix multiplication is called the **general linear group** of dimension **n** over the field c denoted by GL(n,c).

Definition (2.3), [11]

Let $R:G \rightarrow GL(n, c)$ be a matrix representation of G, then R is said to be **reducible** if for any $x \in G$, R(x) is equivalent to a matrix of the form

$$\mathbf{M}^{-1} \mathbf{R}(\mathbf{x}) \mathbf{M} = \begin{pmatrix} R_1(x) & E(x) \\ 0 & R_2(x) \end{pmatrix}, \quad \forall x \in G$$

where $R_1(x)$, $R_2(x)$ are two representations of G. $R_1(x)$, $R_2(x)$, and E(x) are matrices over ¢ of dimensions r×r, The Artin's Exponent of A Special Linear Group SL(2,2^k)

 $s \times s$ and

(n-r)(n-s) respectively, such that 0 < r < n and r+s = n Otherwise then the representation is called **irreducible**

Remark (2.4):

Any one dimensional representation is irreducible.

3. Character Theory

Definition (3.1), [8]:

Let $R:G \rightarrow GL(n, c)$ a representation of G. the complex valued function $X:G \rightarrow G$ defined by χ (x) = Trace(R(x)) is called the **character of x** afforded by the representation R.

Definition (3.2), [5,7]:

Let x, y be two elements of a group G, then we said that x, y be conjugate if $\exists g \in G$ such that $g^{-1}xg = y$

Definition (3.3), [10,16]:

Let G be a finite group, $F:G \rightarrow c$ which is constant on the conjugate classes of G is called **class function**.

4. Induced characters [5]: Definition (4.1), [8]:

Let $H \leq G$ and $X: H \rightarrow c$ is a character (or any class function). Then the induced character

$$Ind_{H}^{G} \quad X(g) \sum_{h \in G} X(hgh^{-1}) =$$

(1/|H|)

where X(g) = 0 if $g \notin H$ **Definition (4.2), [10]:**

The least integer A(G) such that $A(G) \Phi$ is an integral linear combination of the induced principal characters of the cyclic subgroup of G, for all rational valued characters Φ of G, A(G) is called the Artin exponent of G.

Definition (4.3), [4]:

The integer linear combination of arbitrary character induced from the cyclic subgroups of G, a(G) is determined as the least integer such that a(G) X is an integral linear combination of characters induced from cyclic subgroups of G, for all character X of G.

Notation:

The character induced from the characters of its cyclic subgroups of G is called Artins exponent

5. Artin exponent a(G) of finite groups:

Definition (5.1), [6]:

If <t>is a cyclic subgroup of G we define n(t)=n(<t>) to be the number of subgroup <s>of <t> such that $N_G <s>/C_G <s>$ is non trivial .

Theorem (5.2): (Main Theorem)

Let G be a non cyclic group of order Pⁿ. Let $k\ge 0$. The following conditions are necessary and sufficient that $a(G)\le P^k$. 1) For each element χ of order P in G, $a(N_G(<\chi >)/<\chi >)\le P^k$

2) For each element χ of order P in G, there exists a cyclic subgroup <t> containing < χ > such that

 $n(t)\ge m-k-1$, where $|N_G < \chi > |=P^m$.

Proof:

See [6].

Definition (5.3), [6]:

Let G be a finite group, the integral linear combination of arbitrary characters induced from the cyclic subgroups of G is called Artin's exponent of G and denoted by a(G).

Definition (5.4), [6]:

Let G be a finite group, the least integer such that a(G)X is an integral linear combination of characters induced from cyclic subgroup of G, for all characters X of G.

6. The Special Linear Group: Definition (6.1), [1, 5, 9,]:

The general linear group of degree n in the set of $n \times n$ invertible (non singular) matrices, together with the operation of ordinary matrix multiplication. These form a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible.

Definition (6.2), [2] :

The general linear group over the field F is the group of $n \times n$ invertible matrices denoted by GL(n,F). the determination of these matrices is a homomorphism from GL(n,F) into F^{*}. Thus SL(n,F) is the subgroup of GL(n,F) which contains all matrices of determinate one and it is called special linear group .

Theorem (6.3):

Let $G=SL(2,2^k)$ has exactly (2^k+1) conjugacy classes C_g for $g\in Gas$ the table (1).

Proof:

See [5].

7. The Artin Exponent a(G) of $SL(2,2^k)$:

Theorem (7.1):

Let $G = SL(2,2^k)$, k=natural, k>1. Then $a(G)=2^{k-1}$ and the table of characters induced from the characters of all its cyclic subgroups see table (2).

Proof:

 $\begin{array}{l} | \ SL\ (2,2^k) | = 2^k\ (2^{2k}\text{--}1) (by \ lemma \ (3.2.6)) \\ \\ \text{From theorem (3.4.5.), } G = \ SL\ (2,2^k) \\ \text{has exactly (} 2^k + 1) \ \text{conjugacy classes} \\ C_g \ for \ g \in \ G \ see \ table \ (3). \\ \\ \text{where:-} \end{array}$

 $1 {\leq \ell \leq (2^k{\text -}2)/2} \text{ and } 1 {\leq m \leq } 2^k/2$

definition By the of inducing we obtained the induced characters Φ_1, Φ_2, Φ_3 and Φ_4 of $SL(2,2^{k})$ from the characters of all cyclic subgroups see table(4):-Then we have the following table see table(5) : By multiply Φ_4 by -1 we get: $-\ell (2^k (2^k+1))$ By multiply Φ_3 by -1 we get: $-m(2^{k}(2^{k}-1))$ By multiply Φ_2 by $-(1/2^{k-1})$ we get: - $1/2^{k-1} \Phi_2 = -(2^{k-1}(2^{2k}-1)/2^{k-1}) = -(2^{2k}-1)/2^{k-1})$ And then adding the result to $\Phi 1 = 2^k$ $(2^{2k}-1)$ we get: $-m2^{k}(2^{k}-1) - \ell 2^{k}(2^{k}+1) - (2^{2k}-1)$ $+2^{k}(2^{2k}-1)$ $=-2^{k/2}(2^{k}(2^{k}-1)) - ((2^{k}-2)/2) 2^{k}$ $(2^{k}+1) - 2^{2k}+1+2^{3k}-2^{k}$ $= -2^{2k-1}(2^{k}-1) - 2^{2k-1}(2^{k}+1) + 2^{k}(2^{k}+1)$ $\begin{array}{r} + 2^{3k} - 2^{2k} - 2^{k} + 1 \\ = -2^{3k-1} + 2^{2k-1} - 2^{3k-1} - 2^{2k-1} \end{array}$ $^{1}+2^{2k}+2^{k}+2^{3k}-2^{2k}-2^{1k}+1$ $=2^{3k}\left(-\frac{1}{2},-\frac{1}{2},+1\right)+1=1$ Thus a $(SL(2,2^k)) = 2^{k-1}$.

Example (7.2): If k=2 \Rightarrow G = SL(2,2²):-| SL(2,2²) |= 2^k (2^{2k}-1) = 2²(2⁴-1) =60 The conjugacy classes of SL (2,2²) is 2^k+1 =2²+1 = 5, for g \in G 1, c, a^ℓ, b^m where 1 < ℓ < (2^k-2)/2 \Rightarrow

 $1 \leq \ell \leq 1$. $1 \le m \le 2^k/2 \Longrightarrow 1 \le m \le 2$. \Rightarrow 1. c. a¹. b¹. b² $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix},$ $\mathbf{a} = \begin{pmatrix} v^1 & 0 \\ 0 & v^{-1} \end{pmatrix}$ $|<v>|=|F^*|=2^{k}-1$ where the order of a is $2^{k}-1=2^{2}-1=3$. Then $e,e' \le 3/2 \implies e = e' = 1$ Also the order of b is $2^{k}+1=2^{2}+1=5$. Then $f, f \leq 5/2 \Rightarrow f = f' = 1$. See table (6) and table (7)**Example (7.3):** If $k=3 \Rightarrow G = SL(2,2^3)$:-The order of SL $(2,2^3) =$ $2^{k}(2^{2k}-1)=2^{3}(2^{6}-1)$ 1)=8*63=504 Have exactly $+1=2^3+1=9$ conjugacy classes. Where $1 \le \ell \le 2^3 \cdot 2/2 \implies 1 \le \ell \le 3$ $1 \le m \le 2^3/2 \implies 1 \le m \le 4$ \Rightarrow 1, c, a¹, a², a³, b¹, b², b³, b⁴ Order of a is $7 \Rightarrow \ell = 1$ Order of b is 9, the divisors of 9 is 1, $3 \Rightarrow f=1, 3$ see table (8) and table(9). References [1] C. W. Curtis and I. Rainer. "The Representation Theory of Finite Groups". [2] D. M. Jackson. "Notes on the **Representation Theory of Finite** Groups", 2004. [3] Feit W. "Character of Finite Groups", W. A. Benjan, Inc, NewYork 1967. [4] Games, G. D. and M. W. Liebeck. "Representati onand Characters of

The Artin's Exponent of A Special Linear Group SL(2,2^k)

Groups", $2^{nd}Ed.$ Cambridge University Press, Cambridge, 2001. [5] Gehles K. "Ordinary Characters of Finite Special Groups".M.Sc. Linear

Dssertation.University of St.Andrews, August 2002.[6] Gluck, D. "Artin Exponent for

Arbitrary Character of Cyclic Subgroups". Journal of Algebra

Vol. 61, pp. 58-70 University of Illiois 1979.

[7] Hamed, Dunya M. "Rational Valued Characters of the Special Linear Groups SL(2,2)". M.Sc. Thesis, Collage of Education, University of AL-Mustansiriya, 2006.

[8] Isaacs I. "Character Theory of Finite Groups". Academic press, NewYork, 1976 and Associative Algebras", John Wiley and Sons, NewYork-London.1962.

- [9] Keown R. "An Introduction To Group Representation Theory", Academic Press NewYork, 1976.
- [10] Lam T. "Artin Exponent of Finite Groups". Colombia Univiersity, NewYork. Jornal of Algebra Vol. 9 pp (94-119) 1968.

[11] Lederman, W. "Introduction to Group characters", Cambridge University, 1977.

G	Ι	C	a^ℓ	b ^m
Cg	1	$(2^{2k}-1)$	$2^{k}(2^{k}+1)$	$2^{k}(2^{k}-1)$
C _G (g)	$2^{k}(2^{2k}+1)$	2 ^k	2 ^k -1	2 ^k +1

Table (1) The table of conjugacy classes of SL(2,2^k)

The Artin's Exponent of A Special Linear Group SL(2,2^k)

where:-
$$1 \le \ell \le (2^k - 2)/2$$
 and $1 \le m \le 2^k/2$.

$$1 \le \mathbf{l} \le \frac{2^k - 2}{2}$$
 and $1 \le m \le \frac{2^k}{2}$.

$SL(2,2^{k})$	1	С	a^ℓ	b ^m
C _(g)	1	2 ^{2k} -1	$2^{k}(2^{k}+1)$	$2^{k}(2^{k}-1)$
$ C_G(g) $	$2^{k}(2^{2k}-1)$	2 ^k	2 ^k -1	2 ^k +1
Φ_1	$2^{k}(2^{2k}-1)$	0	0	0
Φ_2	$2^{k}(2^{2k}-1)/2$	-2 ^k /2	0	0
Φ_3	$\ell[2^{k}(2^{2k}-1)/(2^{k}-1)]$	0	$-(2^{k}-1)/(2^{k}1)$	0
Φ_4	$m[2^{k}(2^{2k}-1)/(2^{k}+1)]$	0	0	$-(2^{k}+1)/(2^{k}+1)$

where:- $1 \le \ell \le (2^k - 2)/2$ and $1 \le m \le 2^k/2$.

G	1	С	a ^ℓ	b ^m
C(g)	1	(2 ^{2k} -1)	$2^{k}(2^{k}+1)$	$2^{k}(2^{k}-1)$
$ G_G(g) $	$2^{k}(2^{2k}-1)$	2 ^k	$(2^{k}-1)$	(2 ^k +1)

The Artin's Exponent of A Special Linear Group SL(2,2^k)

SL(2,2 ^k)	I	С	a^ℓ	b ^m
Φ_1	$2^{k}(2^{2k}-1)$		0	0
Φ_2	2 ^k (2 ^{2k} -1)/2	2 ^k /2	0	0
Φ_3	$\ell[2^k(2^{2k}-1)/(2^k-1)]$	0	-(2 ^k -1)/(2 ^k -1)	0
Φ_4	$m[2^{k}(2^{2k}-1)/(2^{k}+1)]$	0		$-(2^{k}+1)/(2^{k}+1)$

	Ι	С	a	b
1 _G	1	1	1	1
Ψ	4	0	1	-1
χ	5	1	-1	0
θ	6	-2	0	1

Table (2) The character table of rational representations of SL $(2,2^2)$

Table (3)The table of artin's character of SL $(2,2^2)$

SL(2,2 ²)	Ι	с	a ¹	b ¹	b ²
Cg	1	15	20	12	12
$ C_G(g) $	60	4	3	5	5
Φ_1	60	0	0	0	0
Φ_2	30	-2	0	0	0
Φ_3	20	0	-1	0	0
Φ_4	24	0	0	-1	-1

We can see that:-

$$P a (SL(2,2^2)) = 2$$

The Artin's Exponent of A Special Linear Group SL(2,2^k)

SL(2,2 ³)	Ι	C	а	b ¹	b ³
1 _G	1	1	1	1	1
Ψ	8	0	1	-1	-1
X	27	3	-1	0	0
θ_1	21	-3	0	0	3
θ ₃	7	-1	0	1	-2

Table (4) The character table of rational representations of SL $(2,2^3)$

Table (5)The table of artin's characters of SL(2,2	³)
--	----------------

$SL(2,2^{3})$	Ι	C	a ¹	a ²	a ³	b ¹	b ²	b ³	b ⁴
C _(g)	63	72	72	72	56	56	56	56	63
$ C_G(g) $	8	7	7	7	9	9	9	9	8
Φ_1	0	0	0	0	0	0	0	0	0
Φ_2	-4	0	0	0	0	0	0	0	-4
Φ_3	0	-1	-1	-1	0	0	0	0	0
Φ_4	4(56)=224	0	0	0	0	-1	-1	-1	-1

The Artin's Exponent of A Special Linear Group SL(2,2^k)

We can	see that:									
	-Ф4:	-224	0	0	0	0	1	1	1	1
	-Фз:	-216	0	1	1	1	0	0	0	0
	-1/4	-63	1	0	0	0	0	0	0	0
	Ф2:									
		-503	1	1	1	1	1	1	1	1
	Φ ₁ :	+504	1	1	1	1	1	1	1	1
		1	1	1	1	1	1	1	1	1

 $P a (SL(2,2^3))=4=2^{3-1}$