Studying The Dielectric and Structural Properties of Ba_xsr_{1-X}tio₃ (BST) Ferroelectric System Prepared by Using Oxalic Acid Route

Dr. Sabah M. Ali Ridha * & Rawa A. Helal**

Received on:2/2/2009 Accepted on:3/12/2009

Abstract

Ba_xSr_{1-x}TiO₃ (BST) ferroelectric nano, poly crystalline systems were processed with three concentrations (x = 0.5, 0.7 and 0.9) using a technique known as oxalic acid route. The XRD spectra were analyzed, and used Scherer formula to estimate the crystallite size of the products, which reached to 15.4 nm at x = 0.5. It is found that increasing of Sr² cations help to decrease the crystallite size of Ba_xSr_{1-x}TiO₃ system and the tetragonality c/a increases when the crystallite size increases. In physical tests we conclude that the oxalic acid method is a good method to prepare a BST ferroelectric phase with high density (5.05, 5.5 and 5.45) gm/cm³, and small porosity (16, 8, and11) % for (x = 0.5, 0.7 and 0.9) respectively.

Keywords: ferroelectric, polar materials, BST

الخلاصة

تم تحضير مادة فيروكهربائية نانوية ذات النظام متعدد النبلور Ba_xSr_{1-x}TiO₃ (BST) (x = 0.5, 0.7 and 0.9) وبثلاثة تراكيز هي (0.7 and 0.9 للنماذج وبتطبيق معادلة شيررأمكن حساب حجم ال طيف حيود الاشعة السينية XRD للنماذج وبتطبيق معادلة شيررأمكن حساب حجم ال crystallite وفي هذا البحث بلغ حجم ال crystallite القيمة 15.4 نانومتر عند التركيز = x 0.5, كما وجد أن زيادة تركيز ايونات السنترونتيوم في النظام (BST) يساعد في أنقاص حجم الس crystallite وبتعادات وبتعاد مع أزدياد حجم ال Bay 2.5 الاختبار ات الفيزيائية تم ألاستتاج بان طريقة الحامض الاوكز اليكي طريقة جيدة لتحضير مادة 16, 8, مسامية عالية بكثافة عالية (16, 8, 5.5, and 5.45), ومسامية قليلة 16, 8 % (11 للتراكيز (0.2 and 0.4 and 0.5)) على التوالي.

* Applied Sciences Department, University of Technology/ Baghdad ** Electromechanical Engineering Department, University of Technology/ Baghdad

2015

https://doi.org/10.30684/etj.28.10.13

2412-0758/University of Technology-Iraq, Baghdad, Iraq This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Studying The Dielectric and Structural Properties of Ba_xsr_{1-X}tio₃ (BST) Ferroelectric System Prepared by Using Oxalic Acid Route

Introduction:

Ferroelectrics are polar materials. They exhibit spontaneous polar-ization even in the absence of external electric field and their spontaneous polarization can be switched by subjecting the material to electric field [1-3]. Ferroelectrics also possess domains, exhibit hysteresis loops, and show Curie-Weiss behavior near their phase transition temperature T_C [4]. The applications of ferroelectric materials cover a broad rang based on their dielectric piezoelectric, pyroelectric, electro-optic and ferroelectric specialty properties. A huge leap in the research on ferroelectrics leading the wide spread use of to ferroelectric ceramics in capacitor applications and piezoelectric transducer devices, since then many other ferroelectrics (like Barium titanite BT, Barium Zirconium titanite BZT, Lead Zirconium titanite PZT, and BST) have been developed utilized for variety and of applications [5-6]. BST (Barium strontium titanate) is a ferroelectric solid solution of BaTio₃ and SrTiO₃. which prepared by using sol-gel and methods,[7,8]. Ceramic BST structure belongs to perovskite family which has the general formula ABO₃ .The spontaneous polarization in Ba_xSr_{1-x}TiO₃ ferroelectric states usually attributed to the distortion of both cation and anion of sub lattices. Its structure dependent on T_C (Curie temperature) in other words if the temperature above T_C it has a cubic symmetry (paraelectric phase) figure (1-a), while at temperature below Curie temperature BST exhibit tetragonal symmetry (polar phase)

fig. (1-b), [9-12]. In $Ba_xSr_{1-x}TiO_3$ system, dielectric constant reached to 19000 for (x = 0.7) with sintering temperature 1350 °C for 6h by using a solid state reaction sintering processing, and the grain size (8.77– 14.70µm) [10].While dielectric constant reached to (700, 650, 500) for (x = 0.9, 0.75 and 0.5) respectively, using a conventional process with sintering temp 1300 °C for 2hr and crystallite size (3.89-8.03 nm) [7].

Experimental:

In order to obtain BST powders, the first step is preparing an aqueous solution contains (4.88) gm of (BaCl₂.2H₂O) and (5.33) gm of (SrCl₂.6H₂O) by initially boiling distilled water for at least 20 minutes. The water was maintained under stirring by using a magnetic stirrer. After dissolving, the solutions filtered to remove any precipitates. Then TiO₂ powder dissolves with distilled water and adds to the solution which previously described [the initial ratio of (Ba + Sr) relative to (Ti) molar weight must be equal to (1.1) to get a single phase of BST systems], at last one mole of oxalic acid adds the solution. The reaction continues till getting resin and viscose precipitates by adjusting pH using NH₄OH.The resultant was washed by distilled water to remove the residual Ba^{+2} and Sr^{+2} cations. The precipitate dried in a dry oven at 100 °C for 6 hours, ground, pressed to pellets with (10 mm) in diameter and thickness of (2-3 mm), and sintered at (800 °C, 1000 °C , 1100 $^{\circ}$ C) for (1.5, 2.5, 4) hour for each sintering temperature.

Result and Discussion:

The full shrinkage determines the fit sintering temperature (1100 °C) and soaked time (4hr) to BST pellets. Figure (2-(a, b, c)) illustrated the XRD patterns of $(Ba_xSr_{1-x}TiO_3)$ pellets for the three concentrations (x = 0.5, 0.7 and 0.9) respectively, which prepared at 1100 °C for 4h. It is a clearly observed that there is no XRD peaks correspond to TiO₂ (not detected), which indicated complete reaction of TiO₂ powder under preparing conditions. The phase examination was built by comparing between that the XRD spectra of this investigation (20, d-spacing and miller indices) (where the \mathfrak{B} range for all specimens about $(20^{\circ} - 50^{\circ})$ with XRD patterns of 1997 JCPDS -International center for diffraction Data .It is found that ultra fine powders, poly crystalline, tetragonal $Ba_xSr_{1-x}TiO_3$ structure has been obtained from this process. The analysis demonstrates the reflection from planes (100), (110), (111), (200) for each concentration. The major peak of the high crystallinty lies in the angle $2\theta = 31.74^{\circ}$ of the XRD standard pattern was shifted to $(31.49^{\circ}, 31.56^{\circ} \text{ and } 31.690^{\circ})$ for different concentrations (with x =0.5, 0.7 and 0.9) respectively, this change is induced due to the effect of adding Sr^{+2} cations in the crystal lattice.

Table (1) gives the crystallite grain size, and the tetragonality c/a of the resultant powders. It is clear from this table that increasing of Sr^{+2} cations help to decrease the grain size of $Ba_x Sr_{1-x} TiO_3$ systems, while it is found that the tetragonality c/a increases when the crystallite size increases.

Figure (3) show a micrographs of BST pellets carried out by using optical microscope (type: A. Cruss, Optronic Germany) with digital camera. It is clearly observed in this photo that an ultra fine microstructure with sub micrometer grains. The figure also implies the absence of abnormal grain growth, actually, relatively little normal grain observed. growth is This demonstrates the value of pressing and sintering for achieving high densities while creating ultra fine grain sizes. Table (2) shows the apparent density of the products which is high reach's to 5.5gm/cm³ for pellet sintered at 1100°C for 4hr of BST, and close to theoretical value is 5.7 gm/cm^3).

This indicates that it is possible to produce BST ceramics with high density by using oxalate process; while the porosity is small 8%.We should mention that it is so important to reach a high density because of the significant dependent of the polarization properties on it. Table (3) demonstrates the dielectric strength of BST ceramic pellets subjected to break down voltage of (1kV/mm) and (2kV/mm .This table implies that the dielectric strength of BST ceramics increases when Sr+2 cations is increased in proportion equal to (0.2wt %), but this increment is not continuous, because the dielectric strength decreased with grandly increased of Sr+2cation. The amount of dielectric strength for the prepared BST is the same to semiconductors; this result indicates that it is possible of BST to have semiconductor properties. Also the amount of dielectric strength for the three concentrations under slow rise

is less than the dialectic strength of high break down voltage that is due to the dielectric temperature, the slow rising of the breakdown voltage gives a sufficient time to rise the dielectric temperature and that will be helpful in hastening the ceramics to break down.

Figure (4) shows the lower crystal symmetry ferroelectric phase undergo transformation to a higher crystal symmetry paraelectric phase when the heating increased above a curie temperature, and the decreases of Curie temperature to (95 oC, 32 oC and is less than -15 oC) with increase the Sr+2 cations. in this investigation the dielectric constant reach to (500, 700) for Ba0.9 Sr0.1 TiO3, Ba0.7 Sr0.3 TiO3.

The lower dielectric constant in the resent investigation caused by the effect of the ultra fine crystalline grain size (15.4, 43.65, 42.13) nm, where size less than 1µm had a single domain forms inside each grain and for that the movement of domain walls are restricted by the grain boundaries, while fine and coarse grain size $> 1 \mu m$ had a multiple domains in a single grain. The motion of its walls increases the dielectric constant. The broadening of the dielectric peaks in figure(4) caused when domains orientation is random which will tend to broaden ferroelectric transition(that the means a much lower temperature dependency of the dielectric constant, in other words, a better temperature stability of dielectric constant), and that happened in ultra fine grain size (< 0.200 nm). Temperature increases affected on the density and leads to perturb the alignment of permanent dipoles as

Studying The Dielectric and Structural Properties of Ba_xsr_{1-x}tio₃ (BST) Ferroelectric System Prepared by Using Oxalic Acid Route

a result of the thermal vibration of the atoms. for these reasons mechanisms polarization contributions decreased. This affect temperature of increases demonstrates clearly at Figure (5) and Figure (6), which shows the loss and factor quality behavior respectively with temperature increases. Figure (5) illustrates the loss factor $(\tan \delta)$ vs. temperature for the three concentrations. The loss factor $(\tan \delta)$ reached to (0.175, 0.19 and 0.2) at Curie temperature. The loss in energy is caused by heating there is only one mechanism of polarization "orientation" which contributes in the polarization (while the others decrease as a result of decreasing the density with high temperature till Curie temperature).

At Curie temperature, the contribution of orientation dipoles was over due to the thermal vibration and that leads to perturb the alignment. This explains why the high loss factor takes a part at Curie temperature. The last part of dielectric loss factor peaks comes from the contribution of the residual polarization mechanisms which decreases with temperature. Above Curie temperature the material is in cubic symmetry so there is no energy dissipation that associated with charge polarization.

The previous reasons are also affected the quality factor Q, figure (6) demonstrated those effects for BaxSr1-xTiO3 systems. Above Curie temperature, the material was in paraelectric state (that mean a cubic symmetry) so there is no energy dissipation that associated with charge polarization.

Figure (7) illustrates the resistivity for each concentration affected by heating. When а tetragonal undergoes transition to cubic symmetry by heating, the resistivity undergoes from low resistivity below Curie temperature to high resistivity above Curie temperature, and that is because of inhibition the dipoles in paraelectric state In fig. (8) and fig. (9) the dielectric constant and the $(tan\delta)$ respectively become almost constant for frequency range (103Hz-105 Hz). The dielectric constant reach (590, 490 and 298) for Ba0.5 Sr0.5 TiO3. Ba0.7 Sr0.3TiO3 and Ba0.9 Sr0.1 TiO3 at 1kHz respectively, and it is almost constant over a wide range of frequencies. It is clearly observed that for frequency range (103Hz-105 Hz) the external field has a large effect on charges and dipoles movement, In other words the three kinds of polarization mechanisms (orientation, Ionic and electronic) obey the external electric field orientation at that range, and contribute in the polarization.

Conclusions

The oxalic acid method was applied for synthesis BaxSr1xTiO3 (BST) ferroelectric and poly crystalline pellets under sintering temperature 1100 0C for 4hour.BST Systems were with processed three concentrations (x = 0.5, 0.7 and 0.9). Increasing of Sr+2 cations help to decrease the Curie temperature to (-15 oC) and crystallite size to(15.4 nm) of BaxSr1-xTiO3 systems at x = 0.5. While the tetragonality c/a of the tetragonal component decreases with decreasing the crystallite size by adding more Sr+2 ions.

Each ultra fine BST crystallite grains and the high density will reach's to 5.5gm/cm3 are due to significant dependent of the polarization properties on it. The low amount of dielectric strength for the prepared BST indicates that it is possible of BST to have semiconductor properties. The dielectric constant and the (tanb) respectively become almost constant for frequency range (103Hz-105 Hz).

References

[1]-G. Burns, "Solid State Physics", International Edition. Academic Press, Inc, 1985. [2]-J. Burfoot and G. Taylor," Polar Dielectrics and Their Applications", the Macmillan Press LTD, 1979. [3]-B. Jaffe, W. R. Cook and H. Jaffe. "Piezoelectric Ceramic". Academic Press, London 1971. [4]-M. Cormick et al, "Processing Effects on The Composition and Properties Dielectric of Hydrothermally Derived BaxSr1xTiO3 Thin Films", J.matter Res, vol .16, no .4, pp.1200-1209, Apr 2001.

[5]-I. Abdul Majeed, "Preparation and Investigation of Conductivity and Dielectric Behavior of Some Ferri -Ferro Composites, Ph.D thesis, University of Technology, 2005.

[6]0-J. yasseen, "Studding the Dielectric Properties of BaxSr1xTiO3 Group", Ph.D thesis, University of Technology, 2005.

[7]-B. Dus et al, "The Sol–Gel Synthesis of Barium Strontium Titanate Ceramics ", Materials Science-Poland, vol .25, no .3, pp.791-799, 2007.

Eng & Tech Journal	Vol 28 No 10 2010
Eng. & Ittl. Journal,	101.20, 110.10, 2010

Studying The Dielectric and Structural Properties of Ba_xsr_{1-x}tio₃ (BST) Ferroelectric System Prepared by Using Oxalic Acid Route

[8]-Y. Liou and C. Wu ,"Synthesis Precursors" Journal of the Korean and Diffused Phase Transition of Physical Society", vol .32, pp. S1227-Ba0.7Sr0.3TiO3 Ceramics by A S1230, February 1998. [11]-R. Roeder and E. Slamovich, reaction -Sintering Process ,Science Direct "Stoichiometry Control and Phase ,ceramics International ,vol .34 ,pp .517-522 , Selection Hydrothermally Derived BaxSr1-xTiO3 Powders ", J. Am. 2008. [9]-S. Gijp, L.Winnubst, and H. Ceram .Soc, vol .82, no .7, pp. 1665-Verweij,"An Oxalate-Peroxide 1675, 1999. Complex Used in The Preparation of [12]- H. Wu and W. Shen "Dielectric Doped Barium Titanate ", J. mater. Pyroelectric Properties and of chem., vol .8, no .5, p. 1251, 1998. BaxSr1-xTiO3 Quantum Effect and [10]-K. Koh et al, "The Preparation Phase Transition ", Physical Review of BaTiO3 and Ba0.65Sr0.35TiO3 B, vol .73, pp. 1-9, 2006. Powders from Complex Acetate

Ba x Sr 1-x	C.S (nm)	c (A°)	a (A°)	c/a	V(A°)^3
TiO ₃					
Ba _{0.5} Sr _{0.5.} TiO ₃	15.4	3.971	3.944	1.007	61.769
Ba _{0.7} Sr _{0.3} TiO ₃	34.65	3.979	3.936	1.01	61.643
Ba _{0.9} Sr _{0.1} TiO ₃	42.13	3.988	3.91	1.02	60.969

Table (2): The App. density, bulk density and the porosity for BST Pellets sintered for 4hr at 1100 °C.

BST Systems	App. density (gm/cm ³)	Bulk density (gm/cm ³)	App. Porosity (%)
Ba _{0.5} Sr _{0.5} TiO ₃	5.05	4.62	0.16
Ba _{0.7} Sr _{0.3} TiO ₃	5.5	5.1	0.08
Ba _{0.9} Sr _{0.1} TiO ₃	5.45	4.9	0.11

BST Systems	E _b (kV/mm)		
	1kV/ mm	2 kV/ mm	
Ba _{0.5} Sr _{0.5} TiO ₃	2.52	2.68	
Ba _{0.7} Sr _{0.3} TiO ₃	3.18	5.19	
Ba _{0.9} Sr _{0.1} TiO ₃	3.03	4.7	

Table (3): The dielectric strength for BST pellets sintered for 4hr at 1100°C.

Figure (1): the perovskite structure of BST ferroelectric at (a) T> Tc, (b) T<Tc, [10]

Studying The Dielectric and Structural Properties of $Ba_x sr_{1-x} tio_3$ (BST) Ferroelectric System Prepared by Using Oxalic Acid Route

Figure (2): XRD spectrum for (a) Ba 0.5 Sr 0.5 TiO₃ (b) Ba 0.7 Sr 0.3 TiO₃ (c) Ba 0.9 Sr0.1 TiO₃

(a)

 $\label{eq:studying} \begin{array}{l} \mbox{The Dielectric and Structural} \\ \mbox{Properties of } Ba_x sr_{1-x} tio_3 \, (BST) \mbox{ Ferroelectric} \\ \mbox{System Prepared by Using Oxalic Acid Route} \end{array}$

(a)

Studying The Dielectric and Structural Properties of Ba_xsr_{1-X}tio₃ (BST) Ferroelectric System Prepared by Using Oxalic Acid Route

Figure (4): demonstrated dielectric constant vs. temperature for (a)Ba_{0.5}Sr_{0.5}TiO₃, (b)Ba $_{0.7}$ Sr $_{0.3}$ TiO $_3$ (c) Ba $_{0.9}$ Sr $_{0.1}$ TiO $_3$ sintered at 1100 C^o for 4hour.

(b)

(c)

Studying The Dielectric and Structural Properties of Ba_xsr_{1-x}tio₃ (BST) Ferroelectric System Prepared by Using Oxalic Acid Route

Figure (5): The quality factor vs.-temperature for (a) $Ba_{0.5}Sr_{0.5}TiO_3$ (b) $Ba_{0.7}Sr_{0.3}TiO_3$ (c) $Ba_{0.9}Sr_{0.1}TiO_3$ systems sintered at 1100 °C for 4hour

PDF created with pdfFactory Pro trial version www.pdffactory.com

Studying The Dielectric and Structural Properties of $Ba_x sr_{1-x} tio_3$ (BST) Ferroelectric System Prepared by Using Oxalic Acid Route

Figure (6): The loss factor vs.-temperature for (a) $Ba_{0.5}Sr_{0.5}TiO_3$ (b) $Ba_{0.7}Sr_{0.3}TiO_3$ (c) $Ba_{0.9}Sr_{0.1}TiO_3$ systems sintered at 1100 °C for 4hour

Studying The Dielectric and Structural Properties of Ba_xsr_{1-x}tio₃ (BST) Ferroelectric System Prepared by Using Oxalic Acid Route

Figure (8): The dielectic constant vs.frequency sintered at 1100 °C for 4hour

Figure (9): The loss factor vs. frequency sintered at 1100 oC for 4hour