A Moment Method for the Second Order Two-point Boundary Value Problems

Fuad A. Alheety*, Bushra E. Kashem *\& Ahmed M. Shokr*

Received on: 1/10/2009
Accepted on: 16/2/2010

Abstract

In this paper a Moment method based on the second, third and fourth kind Chebyshev polynomials is proposed to approximate the solution of a linear twopoint boundary value problem of the second order. The proposed method is flexible, easy to program and efficient. Two numerical examples are given for conciliating the results of this method, all the computation results are obtained using Matlab.

Keywords:- Moment method, Chebyshev polynomial, linear two-points boundary value problem (LTPBVP), Second order.

الطريقه اللحظيه لمسـائل القيم الحدوديه بين نقطتين من الرتبه الثانيه الخلاصة
قدم في هذا البحث طريقه اللحظبه و المبنية على متعددات حدود شبشف لـلانو اع الثاني, الثثالث, الر ابع لتقريب الحل لمسألة القيم الحدودية الخطية بين نقطنين من الرنبه الثانيه .الطريقة المقترحة مرنة, من السهل برمجتها وكفؤة. اعطي مثالين عددين لحساب النتائج بهذه الطريقة, كل Matlab النتائج تم حسابها باستخدام
*Applied Science Department, University of Technology/ Baghdad

1. Introduction

There are large problems in engineering and physics that can be described through the use of linear two-point boundary value problem. Such that diffusion occurring in the presence of exothermic chemical reaction, heat conductions associated with radiation effect [10].

Consider the second order linear two-point boundary value

$$
\begin{align*}
& M[Z(x)]=z^{\prime \prime}+p(x) z^{\prime}+q(x) z=f(x) \\
& x \in[a, b] \tag{1}
\end{align*}
$$

$z(a)=g_{0} \quad, z(b)=g_{1}$
problem [6]where M is the $2^{\text {th }}$ order differential operator, the given function p, q and f are continuous on [a,b]. Many researchers used TPBVP of the second order in many subjects such as Bently,T.G. who used Spectral integration to present the solution of linear Two-point boundary value problem[2], while Jin \& Wei studied wavelet functions applyied for two-point boundary value problem.[8]

In this paper the moment method with the second, third and fourth kind of Chebyshev polynomials will be used to approximate the solution of the two-point boundary value problem of the second order.

2. Chebyshev Polynomials

Chebyshev polynomials are extremely important in approximating theory and they also
arise in many other areas of applied mathematics [9].
The definitions and certain basic properties of the Chebyshev polynomials are presented. These properties are needed to prove our main results.

2.1 The first- kind Chebyshev

Polynomials T_{n} : - [11]
The Chebyshev polynomials of the first kind $T_{n}(x)$ may be defined by the following recurrence relation. Set
$T_{0}(x)=1$ and $T_{1}(x)=x$, then

$$
\begin{gather*}
T_{n}(x)=2 x T_{n-1}(x)-T_{n-2}(x) \\
n=2,3, \ldots \tag{2}
\end{gather*}
$$

Important properties of Chebyshev polynomials can be formulated as:-[7]
1-They are orthogonal with weighted function
$w(x)=\frac{1}{\sqrt{1-x^{2}}}$ on the interval $[-1$,
1] that is:-

2-A Chebyshev polynomial at one point can be expressed by neighboring Chebyshev polynomial at the same point, that is:-
$T_{0}(x)=1, T_{1}(x)=x, T_{m+1}(x)=2 x T_{m}(x)-T_{m-1}(x) \ldots(3)$
3- $T_{m}(x)$ has m-distinct zeros x_{i} that lie in the interval $[-1,1]$, given by:-
$x_{i}=\cos \left(\frac{(2 i+1) \pi}{2 m}\right), \quad i=0,1, \ldots, m-1 \mathrm{mo}$ reover, T_{m} assumes it absolute extreme at:-
$x_{i}=\cos \left(\frac{i \pi}{m}\right) \quad, \quad i=0,1, \ldots, m$
4-The explicit expression of general formula of T_{m} is
$T_{m}(x)=\frac{m}{2} \sum_{r=0}^{[m / 2)}(-1)^{r} \frac{(m-r-1)!}{r!(m-2 r)!}(2 x)^{(m-r)}$
where
$[m / 2]= \begin{cases}\frac{m}{2} & \text { if } m \text { is even } \\ \frac{m-1}{2} & \text { if } m \text { is odd }\end{cases}$
Proposition: - [9]
The $n^{\text {th }}$ derivatives of
Chebyshev polynomials T_{m} are formulated as:-

when $=12$, . and ≥ 0

2.2 The second- kind Chebyshev

Polynomials U_{n} : - [7]
The Chebyshev polynomial $U_{n}(x)$ of the second kind is a polynomial of degree n in x and range same as for $T_{n}(x)$ defined by the recurrence

$$
\begin{equation*}
U_{n}(x)=2 x U_{n-1}(x)-U_{n-2}(x) \text { with } U_{0}(x)=1, U_{1}(x)=2 x \tag{5}
\end{equation*}
$$

so we deduce that
$U_{0}(x)=1, U_{1}(x)=2 x, U_{2}(x)=4 x^{2}-1, U_{3}(x)=8 x^{3}-4 x, .$.

2.3 The Third and Fourth kind

 ChebyshevPolynomials V_{n} and W_{n} :-[7]

Two other families of polynomials $\mathrm{V}_{\mathrm{n}}(\mathrm{x})$ and $\mathrm{Wn}(\mathrm{x})$ may be constructed, which are related to $T_{n}(x)$ and $\mathrm{U}_{\mathrm{n}}(\mathrm{x})$, but which have trigonometric definitions involving the half angle $\theta / 2$ (where $x=\cos \theta$
forall $m \geq 1$ as before). These polynomials are also referred to as the 'airfoil polynomials', but Gantschi(1992) rather appropriately named them third and fourth- kind Chebyshev polynomials.

Definition

The Chebyshev polynomials $V_{n}(x)$ and $W_{n}(x)$ of the third and fourth kinds are polynomials of degree n in x :-

These polynomials too may be efficiently generated by the use of 4 a recurrence relation.

$$
\begin{equation*}
V_{n}(x)=2 x V_{n-1}(x)-V_{n 2}(x) \text { with } V_{0}(x)=1 V_{1}(x)=2 x-1 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
W_{n}(x)=2 x W_{A}(x)-W_{n-2}(x) \text { withW }(x)=1, W_{1}(x)=2 x+1 \tag{8}
\end{equation*}
$$

where $n=2,3,4, \ldots$
we may readily show that

$$
\begin{align*}
& V_{0}(x)=1, V_{1}(x)=2 x-1, V_{2}(x)=4 x^{2}-2 x-1, \\
& V_{3}(x)=8 x^{3}-4 x^{2}-4 x+1 \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
& W(x)=1, W_{(}(x)=2 x+1, W_{2}(x)=4 r^{2}+2 x-1, W_{3}(x) \\
& =8 x^{3}+4 x^{2}-4 x-1, \ldots \tag{11}
\end{align*}
$$

Thus $\quad V_{n}(x)$ and $W_{n}(x)$ share precisely the same recurrence relation as $T_{n}(x), U_{n}(x)$ and their generation differs only in the prescriptions of the initial condition $\mathrm{n}=1$.

Delves and Mohmad used Chebyshev polynomials in Galerkin approximation method to present a solution of Fredholm integral equation [3], moreover Guglieme and Mario suggest a simple method based on Chebyshev approximation at Chebyshev nodes to approximate partial differential equations.[5]

3. Moment Method

Moment method is one of the weighted residual methods, Sarker and Su used this method for solving Fredholm integral equation of the first kind [12], while Abdolerza, Farhad and Jafar improved second moment method for solution of pure advection problem [1].

We consider the following second order linear two-point boundary value problem:-
$M[Z(x)]=z^{\prime \prime}+p(x) z^{\prime}+q(x) z=f(x) \ldots(12)$
with the boundary conditions

$$
\begin{equation*}
z(a)=g_{0} \quad, \quad z(b)=g_{1} \tag{13}
\end{equation*}
$$

where $x \in[a, b]$ and the function p, q and f are continuous on $[\mathrm{a}, \mathrm{b}]$.

The problem of finding an approximation solution to the boundary value problem (12) is often obtained by assuming the solution $Z(x)$ as:-
$Z_{N}(x)=\sum_{i}^{N} d_{i} C_{i}(x)=\frac{1}{2} d_{0} C_{0}(x)+d_{1} C_{1}(x)+\ldots+d_{N} C_{N}(x) \ldots(14)$
for all $a \leq x \leq b[7]$.
where C_{i} 's are the second, third and fourth kind Cheyshev polynomial defined in (6), (10) and (11). This approximation must satisfy the boundary conditions (13), substituting (14) in (12) we get the residue in the differential equation:-
$E(x)=M\left[z_{N}(x)\right]-f(x)$
the residue $\mathrm{E}(\mathrm{x})$ depends on x as well as on the way that the parameters d_{i} are chosen.

We hope the residue $\mathrm{E}(\mathrm{x})$ will become smaller; the exact solution is obtained when the residue is identically zero. It is difficult to make $E(x)=0$; we shall try to make it as small as possible in some sense.

In weighted residual methods the unknown parameters d_{i} are chosen to minimize the residual $\mathrm{E}(\mathrm{x})$ by setting its weighted integral equal to zero i.e
$\int w_{j} E(x) d x=0 \quad j=0,1, \ldots, N \quad \ldots$ (16)
where w_{j} is prescribed weighting function.

In moment method, we put the weighting function:-
$w_{j}=x^{j}$
inserting (17) in (16) by yields:-
$\int x^{j} E(x) d x=0, \quad j=0,1,2, \ldots, N$
now, we have $(\mathrm{N}+1)$ linear equations for determent $(\mathrm{N}+1)$ coefficient $d_{0}, d_{1}, \ldots, d_{N}$.
4. The Solution of Second Order TPBVP Using Moment Method

Consider the following second order TPBVP equations:-[6]
$z^{\prime \prime}+p(x) z^{\prime}+q(x) z=f(x)$
Subject to the boundary
conditions:-

$$
z(a)=g_{0} \quad, \quad z(b)=g_{1}
$$

the unknown function $u(x)$ is approximated using:-

$$
\begin{equation*}
Z_{N}(x)=\sum_{i=0}^{N} d_{i} C_{i}(x) \tag{1}
\end{equation*}
$$

where C_{i} s are the second, third and fourth kind Cheyshev polynomials.
since these approximations must satisfy the boundary condition, we get:-

$$
\begin{aligned}
& \left.Z_{x}(x)=2\left(\frac{g_{0}-\sum_{0}^{n} d C_{i}(a)}{C_{0}(a)}\right)\right)_{0}(x) \frac{1}{C_{1}(b)}\left[\left(\varepsilon_{1}-2\left(\frac{g_{0}-\sum_{n}^{x} d C_{C}(a)}{C_{0}(a)}\right), \frac{C_{0}(b)}{2}\right)\right. \\
& -\sum_{e_{2}}^{v} d C_{1}(b) C_{1}(x)+\sum_{R=2}^{n} d C_{1}(x)
\end{aligned}
$$

using operator form to get:-

$$
M[z]=f(x)
$$

where the operator M is defined as:-
$M[z]=\frac{d^{2}}{d x^{2}} z_{N}+p(x) \frac{d}{d x} z_{N}+q(x) z_{N}$
the residue equation becomes:-
$E(x)=M[z]-f(x)$
then given linearly independent $w_{0}, w_{1}, \ldots, w_{N}$ on interval $[\mathrm{a}, \mathrm{b}]$ that is:-
$\int_{b}^{a} w_{j}(x) E(x) d x=0, j=0,1, \ldots, N$
where $w_{j}=x^{j}$.
Gaussian elimination
procedure is used to solve system s and 'of $\mathrm{N}-1$ equations to find d_{m} substitute in eq.(18) to obtain the approximate solution of $\mathrm{z}(\mathrm{x})$.

5. Numerical Examples

$Z(a)=\frac{d_{0}}{2} C_{0}(a)+d_{1} C_{1}(a)+d_{2} C_{2}(a)+\ldots+d_{N} C_{N}(a)=g_{0}$ Consider the following linear
hence
$d_{0}=2\left(\frac{g_{0}-\sum_{i=1}^{N} d_{i} C_{i}(a)}{C_{0}(a)}\right)$
$Z(b)=\frac{d_{0}}{2} C_{0}(b)+d_{1} C_{1}(b)+d_{2} C_{2}(b)+\ldots+d_{N} C_{N}(b)=g_{1}$
hence
$d_{1}=\frac{1}{C_{1}(b)}\left[\left(\left(g_{1}-2\left(\frac{g_{0}-\sum_{i=1}^{N} d_{i} C_{i}(a)}{C_{0}(a)}\right)\right) \frac{C_{0}(b)}{2}\right)-\sum_{i=2}^{N} d_{i} C_{i}(b)\right] \quad \ldots$ (2)
by substitute equation (20) and (21) into (19) we get
$y^{\prime \prime}=y-4 x e^{x}$
with boundary conditions:-
$y(0)=y(1)=0$
while the exact solution is :-
$y(x)=x(1-x) e^{x}$
This problem with $\mathrm{N}=4$ using moment by assuming the approximated solution

$$
y_{4}=\sum_{i=0}^{4} d_{i} C_{i}(x)
$$

Table (1) presents a comparison between the exact and approximated solution which depends on the least square error.

Figure (1) shows a comparison between the exact solution against the approximate solution of the problem which is presented in example (1) using Moment method Cheyshev polynomials second, third and fourth kind of $\mathrm{y}(\mathrm{x})$. Example (2)

Consider the following linear two-point boundary value problem:-
$y^{\prime \prime}=y-x^{2}-x$
with boundary conditions:-
$y(0)=2 \quad, \quad y(1)=4$
while the analytical solution is :-
$y(x)=x^{2}+x+2$
This problem with $\mathrm{N}=5$ using moment by assuming the approximated solution

$$
y_{5}=\sum_{i=0}^{5} d_{i} C_{i}(x)
$$

Table (2) presents a comparison between the exact and approximated solution which depends on the least square error.

Figure (2) shows a comparison between the exact solution against the approximate solution of the problem which is presented in example (2) using Moment method Cheyshev polynomials second, third and fourth kind of $\mathrm{y}(\mathrm{x})$.
6. Conclusions

The method, was described using Chepyshev polynomials of second, third and fourth kind provides convenient and efficient way for solving two-point boundary value problem of the second order. The results show a marked improvement in the least
square errors form which we conclude that:-
The Chepyshev polynomial of the second kind gives better accuracy and stability than the other kinds of Chepyshev polynomials depending on the least square error.
As " N the number of D notes" is increased, the term is decreased.

7. Reference

[1]. Abdolreza.G, Farhad.S \& Jafar.A "An improved Second Moment Method For Solution of Pure Advection Problems", International Journal for Numerical Methods in Fluids 2000; 959-977.
[2]. Bently.T.G "A spectral Integration Method for linear Two-point Boundary Value Problem", Department of Mathematics, Southern Methodist University, Dallas, TX, 752575, USA, 2003.
[3]. Delves, L.M and Mohamed, J.L "Computational Methods for Integral Equations", Cambridge University, 1974.
[4]. Graeme,F. "Finite Element Galerkin Method for Differential Equations" Lecture Notes in pure and Applied Mathematics, Vol, 34, Marel Dekker, New York, 1987.
[5]. Gugliemo,M,C \& Mario,C, "Chebyshev Polynomial Approximation to Approximate Partial Differential Equations", Brunel University, London, 2008. [6]. H.B.Keller "Numerical Method for Two-Point Boundary Value Problems, Dover, New York, 1992.
[7]. J.C.Mason, D.C.Handcomb," Chebyshev Polynomials", Boca
Raton London Newyork Washington, D. C. 2003 by CRC Press LLC.
[8]. Jin-cho,X,U \& Weichangshann, " Galerkin-Wavelet methods for Two-point Boundary Value Problem ", Ams (Mos) ; 65N30, 65F10, 1992.
[9]. kareem,R.S "Approximated Treatment of Higher-order Linear Volterra-integro Differential Equations" M.Sc, thesis, University of Technology 2003.
[10]. Milan, K \& Vladimir,A " Numerical Solution of Nonlinear

Boundary Value Problem with Applications" prentice-Hall, INC1983.
[11]. Mohamed, O.R, Vilmar, T \& Paul,S.W, " Factorization of Chebyshev Polynomial", Kent State University, 1998.
[12]. T.K.Sarkar, C.Su "A Multicale Moment Method for Solving Fredholm integral Equation of the First Kind", Progress in Electromagnetics Research, PIER 17, 237-264, 1997.

Table (1) solution of example (1)

\mathbf{x}	The Exact solution	CH Pol.2	CH Pol.3	CH Pol.4
0	0	0	0	0
0.1	0.0995	0.1001	0.1012	0.1012
0.2	0.1954	0.1946	0.1961	0.1962
0.3	0.2835	0.2826	0.2826	0.2826
0.4	0.3580	0.3581	0.3564	0.3564
0.5	0.4122	0.4123	0.4108	0.4109
0.6	0.4373	0.4369	0.4369	0.4369
0.7	0.4229	0.4232	0.4235	0.4234
0.8	0.3561	0.3557	0.3570	0.3571
0.9	0.2214	0.2213	0.2219	0.2219
$\mathbf{1}$	0	0	0	0
	$\mathbf{L . S . E}$	0.00001	0.00001	0.00001

Table (2) solution of example (2)

\mathbf{x}	The Exact solution	CH Pol.2	CH Pol.3	CH Pol.4
0	2	2	2	2
0.1	2.1100	2.1100	2.1101	2.1101
0.2	2.2400	2.2400	2.2401	2.2401
0.3	2.3900	2.3900	2.3902	2.3902
0.4	2.5600	2.5600	2.5601	2.5601
0.5	2.7500	2.7500	2.7501	2.7501
0.6	2.9600	2.9600	2.9601	2.9601
0.7	3.1900	3.1900	3.1902	3.1902
0.8	3.4400	3.4400	3.4401	3.4401
0.9	3.7100	3.7100	3.7101	3.7101
1	4	4	4	4
	L.S.E	0	0.0000002	0.0000002

Figure (1)

Figure (2)

