Authors

Abstract

In this study, Manual Metal Arc Welding (MMAW) is carried out for low
carbon steel (AISI 1015) with using electrode (E7018). Direct current straight
polarity (DCSP) with the joint geometry of single -V- butt joint and weld one pass
are used for plate of thickness 8mm. experimentally, obtained temperature
distribution in fusion zone which is measured by insert the thermocouple in weld
metal. Cooling rates are determined for the fusion zone at different welding
currents (100, 120 and 140) Amp with constant welding speed at 3.2mm/s.
Numerical analysis by using the Control Volume Method (CVM), applied to threedimensional
heat transfer model to determine the cooling rate in fusion zone.
Cooling rates models are helping in prediction the microstructure (phases, grain
size and volume fraction) and microhardness distribution in weld metal and heat
affected zone. The comparison of cooling curves between numerical and
experimental work have a good agreement, so that deviation was in range ( 6℅ -
21℅) which is confirming the capability and reliability of the proposed numerical
heat transfer model in manual metal arc welding. The best result for cooling rates
when applying mathematical model is at welding current 140Amp.

Keywords