Authors

Abstract

The main objective of the present work is to investigate the
feasibility of using a slurry of fine activated carbon particles,
dp<1mm, in a fixed bed reactor for the removal of sulfur dioxide
from simulated flue gas (air, SO2) stream. A mathematical model
governing the desulfurization process was proposed. The partial
differential equations which describe the adsorption of SO2 from a
moving gas stream to the sorbent bed were solved using a finite
difference method. The kinetic parameters of the mathematical
model were obtained from a series of experimental desulfurization
runs carried out at isothermal conditions and different operating
conditions; bed temperature (333K-373K), initial SO2 concentration
(500ppm-2000ppm) and static bed height (10cm-24cm). The results
showed that the use of fine activated carbon particles improved the
removal efficiency to about 97%. The verification of the simulation
and experimental results showed that the proposed model gave a
good description of the desulfurization process with 95% confidence
level

Keywords