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Abstract 
    In this paper, a numerical solution of fractional reaction-dispersion equation with 
Riesz space fractional derivative has been presented. The algorithm for the numerical 
solution for this equation is based on two finite difference methods. The consistency, 
stability, and convergence of the fractional order numerical method are described. 
   The numerical methods have been applied to solve a practical numerical example 
and comparing results with the exact solution. The results were presented in tables 
using the MathCAD 12 software package when it is needed. The two finite difference 
methods appeared to be effective and reliable in solving fractional reaction-dispersion 
equation with Riesz space fractional derivative. 

Keywords: Riesz fractional derivative, two finite difference methods, fractional 
reaction- dispersion equation, stability, convergence. 

فضاء ريزالكسري الكسرية مع مشتقة رد الفعل - تشتت ادلةالطرق العددية ّ لمع  

 الخ!صة
فض��اء ري��ز  مش��تقةم��ع  تش��تت رد الفع��ل الكس��رية ف��ي ھ��ذا البح��ث ق��دمنا الح��ل الع��ددي لمعادل��ة     

لف���روق  ط���ريقتين وان خوارزمي���ة الح���ل الع���ددي لتل���ك المع���اد(ت قائم���ة عل���ى اس���اس. ◌ِ  الكس���ري
 .ا(تساق وا(ستقرارية والتقارب للطرق العددية ذات الرتب الكسرية: حيث تم مناقشة.المنتھية
 ت�م .م�ع الح�ل المض�بوط  تطبيق�ي ومقارن�ة النت�ائج يع�دد مث�ال لح�ل العددي�ة قالط�ر تطبي�ق ت�م 
ط�ريقتين لف�روق ال إن ل�وحظ. عن�د الحاج�ة12باستخدام برنامج ماث كاد جداول شكل على النتائج عرض
.فضاء ريز الكسري مشتقةمع  تشتت رد الفعل الكسرية معادلةحل  في عالية ودقة كفاءة ذات المنتھية

In troduction 
arious fields of science and
engineering deals with the
dynamical systems that can be 

described by fractional partial 
differential equations, for example, 
system of biology, chemistry and 
biochemistry, applications due to 
anomalous diffusion effects in 
constrained environments. However, 

effective numerical methods and 
numerical analysis for fractional partial 
differential equations are still in their 
infancy, [1, 2, 3, 4, 5, 6]. 
   Liu F. et al. [7] considered the 
fractional Fokker-Planck equation and 
presented its numerical solution. 
Recently, Liu F. et al. [8] also treated 
the fractional advection-dispersion 
equations and derived the complete 
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solution of this equation with an initial 
condition. Chen and Liu [9] considered 
the space Riesz fractional reaction -
dispersion equation and gave error 
analysis. Meerschaert M. et al. [10] 
considered the finite difference 
approximations for two-sided space-
fractional partial differential equations 
and discussed their stability, 
consistency and convergence of the 
method. 
   In this paper implicit and explicit 
numerical methods for solving the 
fractional reaction-dispersion equation 
with Riesz space fractional derivatives 
are presented. Its stability and 
convergence are analyzed. 
 
Two Finite Difference Methods for 
Solving the Fractional Reaction-
Dispersion Equation  
 
    In this section, we propose two finite 
difference methods, i.e., an implicit 
finite difference method and explicit 
finite difference method for solving the 
fractional reaction-dispersion equation 
of the form:  
  

  ),(),(
),(

txuDtxu
t

txu
x
α+−=

∂
∂   …. (1) 

    
   In this problem initial and boundary 
conditions are considered which are:  
 
  u(x,0)=f(x),L<x<R                     ....(2)                                                                  
  u (L,t) = ψ1 (t), Tt ≤≤0           ....(3)       
  u(R,t) = ψ2(t) (t), Tt ≤≤0        ....(4)  
                                                                                            
  where [L,R] is bounded space domain, 
f is a known function of x, ψ1 and ψ2 

are known functions of t. the Riesz 
space-fractional derivative of order α  .  

α
xD , is the Riesz operator, which is 

defined as: 

              ][ ααα
xxx DDCD −+ +−=  
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And α
xD±  are defined as the shifted 

Grunwald estimate to the α-the 
fractional derivative, [10]: 
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,k=0,1,2,…                                              

                                                                                                         
    The finite difference method starts by 
dividing the x-interval [L, R] into n 
subintervals to get the grid points       
xi= L + i∆x, where nLRx )( −=∆   and 
i=0,1,…,n. Also, the t-interval [0,T] is 
divided into m subintervals to get the 
grid points tj = j∆t, j = 0,1,…,m, where 

mTt =∆ . 
    First, we present the following 
implicit finite difference method for the 
initial-boundary value problem of the 
fractional reaction-dispersion equation. 
By Reisz fractional derivative of the 
shifted Grunwald estimate to the α - 
the fractional derivative eq.(5) where 
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1+−=− inM   and  1+=+ iM   [10], one 
can get:                                                                     
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,1,...,2,1 −= ni 1,...,1,0 −= mj    …. (6)                                                                      

Where ),(, jiji txuu = . 

                                           
     The resulting equation can be 
implicitly solved for ui,j+1 to give 
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,1,...,2,1 −= ni 1,...,1,0 −= mj  …. (7) 

                                                                                                                         

Where αβ
))(1( xt

t

∆∆+
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t∆+
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    Secondly, we present the following 
explicit finite difference method for 
solving the fractional reaction-
dispersion equation eq.(1) with the 
boundary conditions (3), (4), and the 
initial condition (2), also use is made of 
Reisz  fractional derivative of the 

shifted Grunwald estimate to the α -th 
fractional derivative given by eq.(5) to 
reduce it  as in the following form: 
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,1,...,2,1 −= ni 1,...,1,0 −= mj    …. (8) 

                                                                                                                       

Where )1( t∆−=η , αβ
)( x

t

∆
∆=

, ),(, jiji txuu = . 

After evaluating eq.(7) and eq.(8) at 
i=1,…,n-1, j=1,…,m-1 and s=0,…,M 
one can get a system of algebraic 
equations which can be solved. 
     Also form the initial condition and 
boundary conditions one can get 
     ui,0 = f(xi), i=0,1,…, n 
     uL,j = ψ1(tj), j=0,1,…, m 
     uR,j = ψ2(tj), j=0,1,…, m 
 
 
 Consistency, Stability and 
Convergent 
    The methods implicit Euler and 
explicit defined by eq.(7) and eq.(8) 
are consistent with order 

[ ])()( αxt ∆Ο+∆Ο , where [ ]α denotes 
the largest integer that is less than or 
equal toα . That consistency of two 
finite difference methods together with 
the results theories (3.1) and (3.2) 
located at the bottom on 
unconditionally stability of implicit 
and conditionally stability of explicit 
implies that the two finite difference 
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methods are convergent. 
    
Theorem 3.1: The implicit system 
defined by the linear difference eq.(7) 
for eq.(1) is unconditionally stable for 
all   1 <α < 2. 
Proof: 
   The system of equations defined by 
(7), together with the initial and 
boundary condition can be written in 
the implicit matrix form jj UUA β=+1  

where 
      ,],,,[ ,,1,0

T
jnjjj uuuU K= and 

 
   A  is the matrix of coefficients, and is 
the sum of a lower triangular matrix 
and a super diagonal matrix. Therefore 
the resulting matrix entries jiA ,  for 

1,,2,1 −= ni K  and 1,,2,1 −= nj K  are 
defined by: 
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To illustrate this matrix pattern, we list 
the corresponding equations for the 
rows i =1, 2 and n-1: 
 

++++ + 111,02101 1()( CguCgCg j βββ

jjj uuCgCguCg ,11,201211,111 )() ηβββ =++ ++

 
+++ ++ 1,122021,032 )( jj uCgCguCg βββ
++++ + 221,21212 ()1( CguCgCg j βββ

  jj uuCg ,21,302 ) ηβ =+  

                   
+++ −+− 011,01 ( CguCg njnn ββ K

+++ −+− 111,222 1() CguCg njn ββ
++ −+−− 211,111 () CguCg njnn ββ

jnjnn uuCg ,11,01 ) −+− =ηβ  

 
    According to the Greshgorin theorem 
[11], the eigenvalues of the matrix A lie 
in the union of the circles centered at 

iiA , with radius ∑
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    With strict inequality holding true 
when α is not an integer. This implies 
that the eigenvalue of the matrixAare 
all no less than 1 in magnitudes. Hence 

the spectral radius of the matrix1−A is 

less than 1. Thus any error in jU  is not 
magnified, and therefore the implicit 
Euler method defined above is 
unconditionally stable.# 
 
 Theorem 3.2: The explicit finite 
difference method (8) is stable if 

α
η

α 4

1 +≤
∆
∆
x

t
, for all 1<α < 2. 

 
Proof: 
   The system of equations defined by 
eq.(8), together with the initial and 
boundary condition can be written in 
the explicit matrix form 
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jj UBU =+1 where 

        ,],,,[ ,,1,0
T

jnjjj uuuU K= and   

  B  is the matrix of coefficients, and is 
the sum of a lower triangular matrix 
and a super diagonal matrix. 
   To illustrate the matrix B pattern, we 
list the corresponding equations for        
i = 1, 2 and n-1: 
 
  ++−=+ jj uCgCgu ,021011,1 )( ββ                                          
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    Therefore the resulting matrix 
entries jiB , for 1,,2,1 −= ni K and
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  According to the Greshgorin theorem 
[11], the eigenvalues of the matrix B lie 
in the union of the circles centered at 
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where )1( t∆−=η . 
Therefore the explicit Euler method 
defined above is conditionally stable. #  
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Numerical Examples 
     In this section, two numerical 
examples are presented, showing the 
fractional reaction-dispersion equation 
with Riesz space fractional derivative 
behaviors of the solution with the two 
finite difference methods. 
Example 1: Consider the fractional 
reaction-dispersion equation: 
                        

tex
x

txu

t

txu −−
∂

∂=
∂

∂ 5.0
5.1

5.1 ),(),(  

   subject to the initial condition   
        u (x,0) = x0.5, 0 < x < 0.2 
   and the boundary conditions 
         u (0,t) = 0, 0 ≤ t ≤ 0.025 
         u (0.2,t) =0.44721 e-t, 0 ≤ t ≤ 
0.025 
   This reaction-dispersion equation 
together with the above initial and 
boundary condition is constructed such 
that the exact solution is  u(x,t)= x0.5 e-t.  

   Table1 show the numerical solution 
using the implicit finite difference 
approximation. From table 1, it can be 
seen that that good agreement between 
the numerical solution and exact 
solution. 

Example 2: Consider the fractional 
reaction-dispersion equation:   
         

tex
x

txu

t

txu −−
∂

∂=
∂

∂ 5.0
5.1

5.1 ),(),(

 
    subject to the initial condition   
      u (x,0) = x0.5, 0 < x < 0.5 
    and the boundary conditions 
       u (0,t) = 0, 0 ≤ t ≤ 0.02 
       u (0.5,t) =0.70711 e-t, 0 ≤ t ≤ 0.02 
   This reaction-dispersion equation 
together with the above initial and 
boundary condition is constructed such 
that the exact solution is  u(x,t)= x0.5 e-t.  

    Table 2 show the numerical solution 
using the explicit finite difference 
approximation. From table 2, it can be 
seen that that good agreement between 
the numerical solution and exact 
solution. 

          Conclusions  
In this paper 

          1-Numerical methods  for solving the 
fractional reaction-dispersion equation 
with Riesz space fractional derivative 
has been described and demonstrated.  
2-The two finite difference methods are 
proved to be stable and converge. 
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Table 1: The numerical solution of example by using the implicit finite  
difference    method for 05.0=∆x and 0125.0=∆ t  

  x        t                    Numerical Solution      Exact Solution            Error   
       0.05    0.0125           0.22100                        0.22083                     -0.17089 E-3                      

0.10    0.0125           0.31200                        0.31230                       0.29952 E-3     
0.15    0.0125           0.38300                        0.38249                     -0.51276 E-3  

      0.05    0.0250           0.21800                        0.21809                      0.85926 E-4 
      0.10    0.0250           0.30900                        0.30842                      0.57993 E-3    

0.15   0.0250           0.37800                        0.37774                     -0.26410 E-3 
 
 
 
Table 2: The numerical solution of example by using the explicit Finite difference 

method for 125.0=∆x and 01.0=∆ t  
 x              t              Numerical Solution       Exact Solution               Error   

       0.125      0.01         0.35000                          0.35004                          0.40000E-4 
       0.250      0.01         0.49500                          0.49502                          0.20000E-4 
       0.375      0.01         0.60600                          0.60628                          0.28000E-3 
       0.125      0.02         0.34700                          0.34655                        -0.45000 E-3 
       0.250      0.02         0.49000                          0.49009                          0.10000E-3      
       0.375      0.02         0.60000                          0.60025                          0.25000E-3 
 
 


