Studying The Effect of Tool Nose Radius on Workpiece Run Out and Surface Finish

Dr. Saad Kariem Shather

Received on: 3/1/2008 Accepted on:6/3/2008

Abstract

Tool geometry play an important role in mechanical machining and surface finish of workpiece. So there are many parameters such as cutting speed ,feed rate ,and tool nose radius that are known to have a large impact on surface quality,however there are many more parameters that have an effect on the surface roughness . this paper fouced on effect of tool nose radius on surface roughness and run out which causes tool chatter, the experiments prove that high values of nose radius causes rough surface with high value of run out also in this paper use seven different values of nose radius of cutting tool were(0.3,0.4, 0.5.1, 1.5, 2, 2.5mm) under different of cutting conditions (such as feed rate ,cutting speed , depth of cut) Results show that good surface finish at nose radius (0.4, 0.5)mm which lead to reduce tool chatters, work run out during machining another calculations were done theoritically for arithmetic roughness which have a small difference with experimentally tests and increasing of roughness and run out at values less than (0.3mm).

Keywords: nose radius, run out, surface finish

دراسة تاثير مقدمة قطر العدة على الانحراف عن المركز والخشونة السطحية الخلاصة

يلعب الشكل الهندسي للعدة القاطعة دوراً مهماً في عملية التـ شغيل الميكانيكي والأنهاء الـسطحي للمشغولة كما أن هذالك عوامل عديدة لها تأثير كبير على نوعية السطح المشغل كسرعة القطع ومعـدل التغدية , نصف قطر أستدارة مقدمة العدة أو مايعرف (nose radius) وقد ركز هذا البحث على تـأثير نصف قطر أستدارة مقدمة العدة على خشونة السطح والأنحراف عـن المركـز أو مـايعرف (Run out) والدي يؤدي الى أهتزاز العدة القاطعة التجارب أثبتت أن القيم العالية لنصف قطر أستدارة المقدمة تـؤدي والدي يؤدي الى أهتزاز العدة القاطعة التجارب أثبتت أن القيم العالية لنصف قطر أستدارة المقدمة تـؤدي هذا البحث تم أستخدام (7) قيم مختلفة من نصف قطر أستدارة المقدمة (0.3,0.4, 0.5.1) والذي يؤدي الى المشغولة و فـي وتحت ظروف قطع مختلفة من نصف قطر أستدارة المقدمة (0.3,0.4, 0.5.1) والنتائج قد بينت أنـه يمكن المصول على منظر معدان التغذية , سرعة القطع , عمق القطع) والنتائج قد بينت أنـه يمكن المركز و الأهتزازات الناتجة أثناء التشعيل ,حسابات نظرية أخرى أنجرية والذي يؤدي الى تقليل الأنحر اف عـن المركز و الأهتزاز الناتجة أثناء التشعيل ,حسابات نظرية أخرى أنجري معان الأنحر معن م المركز و الأهتزازات الناتجة أثناء التشعيل ,حسابات نظرية أخرى أنجري ال عان الأند الم عـن المركز و الأهتزازات الناتجة أثناء التشعيل معابات نظرية أخرى أنجرت المقطية بينت أنـه يمكن

https://doi.org/10.30684/etj.27.2.4

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

^{*} Production and Metallurgy Engineering Department, University of Technology/ Baghdad.

^{2412-0758/}University of Technology-Iraq, Baghdad, Iraq

Introduction

The tool nose radius is very critical part of the cutting edge since it produces the finished surface, if the nose is made to a sharp point the finish machined surface will usually be unacceptable and the life of the tool will be short[1]. if other factors such as the work material, the cutting speed, and cutting fluids are not considered large nose radius will give better surface finish and will permit a faster feed rate to be used .[2]

Machinability tests have demonstrated that increasing the nose radius will also improve the tool life or allow faster cutting speed to be used. For example high speed steel tools were used to turn an alloy steel in one series of tests where complete or catastrophic tool failure was used as a criterision for the end of a tool life.

Avery large nose radius can often be used but a limit is some times imposed because the tendency for chatter to occur is increased as the nose radius is made larger prove that most cutting conditions, experimental and theoretical (Ra) values mach very well, except at low value of feed .Also one of the structural modes of the machine tool workpiece system is excited by cutting forces initially.away surface finish left during the previous revolution in turning is removed during the succeeding revolution which also leaves a wavy surface owing to structural vibrations[3.41

This paper involves a theoretical study in addition to experimental work .

Theoritical procedure

The quality of surface finish is commonly specified along linear and geometric dimension then metal cutting is inherently cyclic, cutting forces built up as the tool pentrates the material and deflect the tool.even if slightly, when repture or shear occurs to form the chip and the forces momentarily drop, the tool springs back .[2] vibration increase when the cutting forces get out of phase with the tool forces that incease the relative speed between the cutting edge and workpiece and the cutting force drop.Actully many more factors such as cyclic vibration in depth of cut properties of materials, friction force and rubbing of the tool nose effect vibrations.chatter may become quite noisy and obnoxious, can damage tools and machines , and defaces work surfaces with patterns called chatter marks .[5,6] surfaces generated by hard turning are nominally defined by the geometry of the cutting processprimarialy by the feed rate and nose radius of the cutting tool . the arithmetic centerline average roughness Ra can be calculated by equation (1), it can also be approximated by equation where f is the feed / revolution and r is the nose radius of the cutting tool. [7,8,9]

 $Ra = f^2 / 32$.r-----(1)

Then for each nose radius(r) and according to above equation Arithmetic roughness can be calculated As in table (1).

Expermental work

Currently a total of (14) different cutting conditions have been tested as shown in table (3).

- 3-1 Turning. Machine was used model (Harrison M300).
- 3-2.Workpiece materials was carbon steel and chemical composition as shown in table(2).
- 3-3 Cutting tool used in experiment was High speed steel (HSS) with different nose radius (0.3,0.4, 0.5,1,1.5,2, 2.5mm) and depth of cut = 0.5mm ,Cutting speed 80 m/min as shown in tables (3) Then another test has been don to calculate the runout of workpiece during mechanical machining as follow in table (3).
- 3-4. Roughness appratus measurement for surface was used (Talysur), it is produced by (Rank Taylor Hobson)

English company.as shwn in Figure(1)

3-5 .Run out measurement was done by indicater device..

Result and Discussion

The test conditions in table (3)are divided into three conditions .the divisions are based on the nose radius of cutting tool ,although the first related with nose radius and the second was related with run out ,third was related with surface roughness, figure (2) shows that the positively relation ship between the nose radius and the surface roughness that's mean increasing nose radius of cutting tool lead to increase the surface roughness according to points shown in diagram at nose radius (0.5, 1, 1.5, 2, 2.5), Except the point at small nose radius 0.3 give high value of roughness because of sharp nose was generated so Figure (3) refers to the same relation between run out and surface roughness also increasing run out during machining causes high roughness because generated un equal surface along the workpiece so this lead to fact that The effect of nose radius is more than the effect of cutting angles on surface roughness except the value of run out 0.2 which clear at line below then Figure (4) shows a ew relation ship between the nose radius and the run out of the workpiece during machining this mean chatter was happened in cutting tool because of roughness was generating and transmitted to cutting tool at maximum nose radius(2.5mm) when run out was 0.2 mm

Conclusions

Tool geometry is one of an important parameters which play important role in surface roughness and dimensional accuracy of workpiece during mechanical machining by using a suitable tool nose radius then the conclusion of this study was

- 1-Increasing nose radius refers to increase surface roughness but not less than 0.4 mm.
- 2-Maximum roughness value was

Studying The Effect of Tool Nose Radius on Workpiece Run Out and Surface Finish

(Ra=4.1 μ m) when nose radius =

2.5mm and good surface finish at nose radius = 0.4 mm when Ra= $0.5 \mu \text{m}$.

- 3- Experimental worke proved that small difference between arithmetic roughness values and experimental values according to table (1) and table (3).except nose values (1,5,2,2.5mm).
- 4-Anew relationshipe was found between nose radius and run out according to tool chatter occurs during turned workpiece surface.
- 5-Maximum run out occurs at high research recomanded use suitable value of nose radius=2.5 mm and surface roughness= 4.1μ m.
- 6- In order to reduce tool chatter nose radius such as (0.4, 0.5mm).
- 7-Also a suitable nose radius for run out was(0.4, 0.5 mm) to get good surface finish (0.5, 1.2μ m).

References

- [1]-Christopher Mccauley(MachinaryS Hand book Guide 26) 2000.
- [2]-E.M.TRENT (metal cutting) second edition / 1984. 3-TyG. Dawson and Thomas R.Kurfess Tool life , wear rates, and surface quality in hard turning , research institutionof SME,vol.(45) pp(77_2).1996.
- [3]-P.V.S.SURESH.ET AL /international journal of machine tools&manufacture 42 (2002).p 675-680.
- [4]-Ronald .A Walsh / Hand Book of
- machining and metal working calculations, copy right ,2001 by the McGraw-Hill companies.inc, united state of America.
- [5]-LAWRENCE E .DOYLE(manufacturing processes and materials for engineers) 1975
- [6]- Thiele, j D.An investigation of surface generation mechanisms for finish hard turning of AISI 52100 steel Masters Thesis Georgia institute of Technology, 1998
- [7]-Tonshoff,H,K,WOBKER,H,G,(Tool wear and surface integrity in hard turning) production engineering, vol(3) No.(1)pp,(19-24),1996.
- [8]-USUF ALTINTAS (manufacturing automation) Cambridge university press / 2000.p97. ns. 2001

No	Nose radius mm	Arithmetic Roughness Ra µm
1	0.3	41
2	0.4	31
3	0.5	25
4	1	12
5	1.5	8
6	2	6
7	2.5	5

Table (1) Arithmetic Roughness(Ra)

 Table (2) Chemical composition (1020)
 Image: Composition (1020)

Metal	С%	Mn%	P%	S%	Rem
Carbon	0.2	0.3	0.04	0.05	Fe
steel(1020)					

 Table (3) Cutting conditions

No	Cutting .	Feed	Nose	Run out	Roughness
	speed	rate	radius	mm	Ra µm
	m/minl	mm/min	mm		
1-	80	0.2	0.3	0.2	1.7
2-	80	0.2	0.4	0.01	0.5
3-	80	0.2	0.5	0.03	1.2
4-	80	0.2	1	0.05	2
5-	80	0.2	1.5	0.07	2.3
6-	80	0.2	2	0.15	2.8
7-	80	0.2	2.5	0.19	3.1

Eng. & Tech. Journal ,Vol.27, No.2,2009

Studying The Effect of Tool Nose Radius on Workpiece Run Out and Surface Finish

Figure (1) Roughness appratus measurement

Figure(2) Influence of nose radius on surface roughness

Figure (3) Influence of nose radius on run out mm

