Electrolytic Removal of Zinc Using A Flow-Through Cell With Amalgamated Copper Screen Cathode

Dr. Abbas H. Sulaymon*, Dr. Mumtaz A. Zablouk** & Anaam A. Sabri**

Received on: 19/3/2008
Accepted on: 7/8/2008

Abstract

The aim of this work was to establish an electrolytic method for the removal of zinc from waste water using a flow-through cell with amalgamated copper screen cathode. The performance of the electrolytic reactor were investigated by using different of electrolyte flow rates (60, 120, 180, 240, 320 L/h) and different initial concentration of zinc solutions (48, 96, 150 mg/L). A synthetic solution was processed using boric acid (0.1M) plus potassium chloride (0.1M) as the supporting electrolyte. The electrolytic cell employed a constant potential of -1.4V vs. SCE in the controlled potential mode.

Dimensionless Sherwood and Reynolds numbers were correlated to characterize the mass transport properties of the reactor, and they were fitted to the equation:

\[Sh = 0.6835 \text{Re}^{0.3895} \text{Sc}^{1/3} \quad \text{For } 1 < \text{Re} < 6.5, \quad 700 < \text{Sc} < 1390 \]

Keywords: removal of heavy metal, a flow-through cell, screen cathode.

*Head of Environmental Engineering Department, Baghdad University/Baghdad
**Chemical Engineering Department, University of Technology/Baghdad

https://doi.org/10.30684/etj.27.2.14
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0
1. Introduction

The quality of water resources and of the environment in general is a permanent concern and has resulted in new solutions for old problems in the field of wastewater treatment. In particular, new efforts have been made at reducing the sources of pollutants and at improving the efficiency of waste treatments.

The ecological and economic problem caused by heavy metals (Cu, Pb, Zn, Ni and Cr) necessitates their recovery from dilute aqueous solutions. Electrochemical technology offers an efficient means of controlling pollution as it provides removal of heavy metals via redox reaction. The literature on application of flow-through porous electrodes in metal ion removal from aqueous solutions is extensive [1-8]. Zinc is one of the heavy metals, which is widely employed as a protective coating on to ferrous material, and electrolytic deposition from an acidic plating bath is the most common process. As the main consumer of metallic zinc and its compounds, the electroplating industry is a source of Zn (II) containing aqueous waste.

In this paper an electrolytic cell with a porous cathode of amalgamated copper screen designed to remove Zinc from aqueous streams. By flowing simulated effluents Zinc ion containing through copper screen cathode, it is possible to achieve both high mass transfer rates and large surface areas for the electrochemical reaction.

2. Experimental Work

A synthetic effluent was used as catholyte solution which was, prepared from ZnCl₂ in such away that Zn (II) concentration were (48, 96. 150mg/L), using 0.1mole/L of boric acid and 0.1mole/L of potassium chloride as the supporting electrolyte. The resulting solution was presented at pH of 5.5. The flow system is shown schematically in Fig. (1)

The system consisted of an electrochemical cell, two Perspex reservoirs of five liters capacity for catholyte and anolyte, two recirculation pumps, and two sets of flowmeters for controlling the catholyte and anolyte flow rates. These components were connected together by polyvinylchloride and polyethylene tubes. The electrochemical cell was made from six discs of Perspex (each 15cm diameter) joined together with four screws. Silicon rubber gaskets with (1mm) thickness were placed between each of the cell compartments to prevent electrolyte leakage. The cell was divided into cathodic compartment which contains amalgamated copper screen cathode and anodic compartment which contains a graphite anode, separated by anionic ion-exchange membrane. The electrochemical cell is described in detail else where [9].

In this system, the electrolytes flow separately through the catholyte and anolyte compartments. The anolyte composition was the same as that of the catholyte, but without Zn (II). The flow rates of both electrolytes were adjusted to the same values (60,120,180,240,320 L/h). Then a constant potential of -1.4V vs. SCE was applied to the cell from a potentiostat system, in the controlled-potential mode. The reduction of Zinc at this potential is mass transport controlled [9]. At predetermined intervals, the solution leaving the cathodic compartment was sampled, and the remaining metal concentration was quantified by atomic absorption spectrometry. This procedure was used for different initial concentration of Zinc solution (48, 96, 150 mg/L).

3. Results and Discussion

Figure (2) shows the decrease in normalized Zn (II) concentration (c (t)/c₀) with the time of electrolysis, using different catholyte flow rates (60,120,160,240,320 L/h) with solution of 48 mg/L of Zn (II).
All these curves had the same profile in which the zinc ion concentration decreases exponentially with the time. Exponential decay of metal concentration is only observed if the reduction reaction occurred at limiting current [10]. Therefore potentials used in the experiments apparently cause the Zn (II) reduction reaction to be mass transfer limited. It can be seen from Fig. (2) that as the flow rate increases the reduction of Zn (II) becomes more effective [9]. This behavior is attributed to greater rate of mass transport of Zn (II) due to an increase in the electrolyte flow rate which reduces the thickness of the boundary layer for mass transfer [4].

Figure (3) shows plot of ln(c(t)/c_0) against time of electrolysis, using data shown in Fig. (2). Expectation of linearity is confirmed and the slopes from straight lines give an indication of the cell performance, since they are related to the mass transfer coefficient. A controlled potential electrolysis at cathode, carried out under mass transfer controlled in a recycle mode is described by [11]:-

\[\ln\left(\frac{c(t)}{c_0}\right) = -\frac{Ve k_m A_e}{V_T} t \] \hspace{1cm} (1)

Since V_e/V_T ratio is 0.000098 for the cell and A_e has been calculated and is equal to 53.4 cm²/cm³ [9] values of k_m can be estimated from the slopes of ln(c(t)/c_0) against time plots for each flow rate considered.

\[k_m = 0.0066 u^{0.364} \] \hspace{1cm} (2)

With CR=0.956 and ER=0.0003, where k_m and u have the units cm/sec.

Figure (5) shows zinc mass deposition versus time, calculated by mass balance for different initial concentration of Zn (II) solution (48, 96,150mg/L). It can be noticed that the curves are exponential with time.

Figure (6) and figure (7) show the curves of normalized concentration as a function of time, using different flow rates of electrolyte (60.160.320L/h) with initial concentration of 96mg/L of Zn (II) and 150mg/L of Zn (II) respectively. As expected, an exponential decay of zinc concentration is observed.

Figure (8) and figure (9) show the ln(c(t)/c_0) against time plot. As mentioned before values of k_m were calculated from the slopes of the ln(c(t)/c_0) against time plot for each flow rate considered. The slopes of the ln(c(t)/c_0) against time plot for each flow rate considered.

Figure (10) shows the variation in k_m with the mean linear flow rate for different initial concentration of Zn (II) solution (48, 96, 150 mg/L) combined together for comparison.

It can be seen from Fig. (10) that the mass transfer coefficient decreases with increasing of initial concentration of Zn(II) solution for a given velocity of electrolyte because the electrolysis demands a greater time for higher initial concentrations of Zn(II) solution as shown in Fig. (5). The mass transfer coefficients from Fig. (10) are used to calculate the dimensionless Sherwood number and j_D - factor for the three concentration of Zn (II) solution (48, 96,150mg/L). Figure (11) shows a Sh/Sc-versus Re (log-log) plot and Figure (12) shows j_D -factor versus Re (log-log) plot for three different concentration of Zn (II) solution (48, 96,150 mg/L). The data for all three concentration of Zn (II) solution have been fitted to a single correlation as...
follows:-
\[Sh = 0.6835 \text{Re}^{0.3895} \text{Sc}^{1/3} \] \(\text{--- (3)} \)
With CR=0.896 and ER=0.097

Conclusions

This research has demonstrated that a flow-through porous electrode made of amalgamated copper screen can be an effective device in removing Zinc from simulated effluents, and the concentration of Zn (II) was reduced to 5mgL^{-1} (allowable of Zn (II) containing solution for final discharge of the aqueous waste stream as in the literature) during recirculation times ranging from 100 to 190min, depending on the flow rate. The best rates of Zinc removal and the highest values for the mass transfer coefficient were obtained at the higher flow rates and higher initial concentration of Zn (II) solution. An empirical correlation was obtained for the effect of electrolyte velocity on the mass transfer coefficient in the electrode. Mass transfer coefficients and hydrodynamic data where correlated through equation (3) and equation(4) as follow:

\[j_D = 0.6818 \text{Re}^{-0.6104} \] \(\text{----- (4)} \)

References

Figure (1) Schematic Diagram of the Flow System

V-1 Inlet valve, V-2 Recycle valve, V-3 Drain valve

M: Membrane

EC: Electrolytic Cell
RE: Reference Electrode
RT: Rotameter
P: Pump
A: Anolyte Reservoir
Figure (2) Normalized concentration \(\frac{c(t)}{c_0} \) against time curves for Zn (II) removal for different flow rate and Zn (II) concentration of 48 mg/L.

Figure (3) Linearization of normalized Zn (II) concentration against time for different flow rate and Zn (II) concentration of 48 mg/L.
Through Electrolytic Removal of Zinc Using A Flow-Through Cell With Amalgamated Copper Screen Cathode

Figure (4) Variation of k_m with electrolyte velocity for Zn (II) concentration of 48 mg/L

Figure (5) Zinc deposited mass versus time curves at flow rate of 160 L/h for different initial concentrations of Zn (II) solution.
Figure (6) Normalized concentration decay as a function of time for Zn (II) removal experiments for different flow rates with solution of 96 mg/L of Zn (II).

Figure (7) Normalized concentration (c(t)/cₜ₀) against time curve for Zn (II) removal for different flow rates, obtained for Zn (II) concentration 150 mg/L.
Figure (8) Plots of $\ln(c(t)/c_0)$ vs. time for Zn (II) removal experiments for different flow rates with solution of 96 mg/L of Zn (II).

Figure (9) Linearization of normalized Zn (II) concentration against time for different flow rates, obtained for Zn (II) concentration 150 mg/L.
Figure (10) Variation of the mass transfer coefficient with the velocity of electrolyte for different concentrations of Zn (II) solution.

Figure (11) Sherwood-Reynolds correlation for the three initial concentration of Zn (II) solution.
Figure (12) j_D-Reynolds correlation for the three initial concentration of Zn(II) solution.