Studying Of Some Phisical Properties And Morphology Of Blends Of Hdpe /Lldpe After And Before Exposure To Uv Light

Dr.Najat J.Saleh*, Nabeela A. Mohammed* & Weam A.Abed*

Received on: 23/8/2006
Accepted on: 23/11/2006

Abstract

Products made of polyethylene used out doors are subjected to UV-degradation. In fact, many polymers show changes in physical properties during service lifetime, when they are exposed to sun light and particularity to UV-light. In the present work, the physical properties and the morphology of blends of high – density polyethylene (HDPE)/linear-low-density polyethylene (LLDPE) studied before and after exposure to UV – light.

HDPE was mixed with different weight percent (0, 15, 30, and 45%) of LLDPE using the two roll mills; the mixing machine is operated at a temperature of 135 °C. Weathering test was carried out to find the effect of the environment condition on the physical properties of the polymeric materials by increasing the exposure times to (100,200,300) hr. The physical properties and the morphology were specified by measuring the (absorption properties, and densities), for the former, and photomicrograph for the latter. The results obtained in this work show that the density of pure HDPE and HDPE/LLDPE blends increased with the increasing the exposure time, and that immersing the HDPE and HDPE/LLDPE blends in water can produce a variety of damage and this damage increased with the increasing of the exposure times also, as the amount of LLDPE is increased in the HDPE/LLDPE blends the amount of water absorbed and diffusivity coefficient, increase greatly, and from the optical micrograph results showed clearly the damage obtained due to exposure to UV light for 300 hr for pure HDPE and HDPE/LLDPE blends.

Keywords: HDPE/LLDPE, physical properties, UV light

Dr. دراسة بعض الخواص الفيزيائية والبنية الشكلية لمخلوطة HDPE/LLDPE قبل وبعد تعرض للاشعة فوق بنفسجية

الخلاصة

إن المنتجات المصنوعة من مادة البولي أثيلين والتي تستخدم في الهواء الطلق أو العراء ت تعرض إلى الانحلال نتيجة تعرضها للإشعاع فوق بنفسجية. العديد من البوليمرات تشهد تغييرًا واضحاً في خواصها الفيزيائية مع مرور الوقت وذلك نتيجة تعرضها لمعرض أشعه الشمس وبصورة خاصة إلى الأشعة فوق البنفسجية.

في البحث الحالي تم دراسة الخواص الفيزيائية وكذلك دراسة البنية المكسيوم من البولي أثيلين عالية الكثافة (LLDPE) و بولي أثيلين عالية الكثافة الخطي (HDPE) قبل وبعد تعرضها للإشعاع فوق بنفسجية. في البحث الحالي تم تزداد البولي أثيلين عالية الكثافة الخطي مع نسبة وزنية من البولي أثيلين واطئ الكثافة الخطي (0,15,30,45%) وذلك باستخدام الأسطوانات المذكورة.

تم أجراء فحص التجويف وذلك لائية تأثير الضرر الجوي على المخلوطة البوليمرية وذلك بزيادة زمن التعرض (100, 200, 300) ساعة. الصفات الفيزيائية والبنية الشكلية تم تعيينها وذلك بقياس (الكثافة و خواص الامتصاص) وعن طريق التصوير المجهرى. النتائج تم الحصول عليها في HDPE/LLDPE هذه الدراسة توصي بأن كثافة البولي أثيلين أثقل ومخلوطة في التعرض للاشعة فوق بنفسجية، وكذلك عملية غمس النماذج في الماء قد أدى إلى إحداث أضرار مختلفة وهذه الاضرار تزداد بزيادة زمن التعرض،وبزيادة النسبة الوزنية للبولي أثيلين واطئ الكثافة الخطي.

*Chemical Engineering Department, University of Technology/ Baghdad

820

https://doi.org/10.30684/etj.27.4.18
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0
1. Introduction

Modified properties, lower prices and reuse of polymers are needed to meet demands of today's society and therefore of the polymer industry. Plastics are used by almost everybody since (for example) most domestic machines have a housing, which is made out of it [1]. It is estimated that 60 to 70% of LLDPE enters the market as blends, primarily with other member of the polyolefin family [2]. Unprotected polyethylene and polypropylene react readily with oxygen during exposure and often become brittle long before visual evidence of breakdown appears. It was found that, exposure of unprotected PP and PE to oxygen at elevated temperatures or under ultraviolet radiation produces a rapid rise in crystallinity. The polymer is protected from harmful radiation at the cost of UV absorption, which is destroyed in the process with time. Several types of organic and inorganic UV absorption are developed for this purpose. Almost all inorganic pigments such as iron oxide and titanium oxide absorb UV radiation to a certain extent and provide some degree of protection [3]. With this background, a number of studies on polyethylene-polyethylene blends have been published. Gupta, and co-workers [4] studied the binary blend of (HDPE) and (LLDPE) in the range of composition from 100% HDPE to 100% LLDPE. Tensile properties (initial modulus, yield stress, and elongation-at-yield, ultimate tensile strength and elongation-at-break, and work of yield and work of rupture) and flexural properties (flexural modulus and flexural yield stress) were studied as a function of blend composition. Karbashewski and Kale [5] studied the effect of additions of (HDPE) on the processability of the (LLDPE), and is found that is not only that high – molecular – weight characteristics of the high – density portion but also the linear nature of the molecules that have negative effect on processability. Also Gupta and co-workers [6] studied the flexural and impact properties of binary blends of (HDPE) and (LLDPE), over a full range of blending ratios, is presented the impact strength variation of this blend is found to correlate with the variation of the fraction of amorphous phase in the blend. Rana [7] studied the effect of co-crystallization on kinetic parameters of HDPE/LLDPE blend. Bischel et. al. [8] studied blends of LLDPE and HDPE using the atomic force microscope. From the results, the relative modulus of crystalline regions is observed to increase with increasing HDPE content. Lee and Denn [9] studied the thermal properties of binary and ternary blends of (HDPE), (LDPE) and (LLDPE) in the melt and solid state and found that HDPE/LLDPE blends are homogeneous in the melt and in both crystalline and amorphous regions in the solid state, and exhibit a single melting peak. Kyucheol et.al. [10] studied the rheological and mechanical properties in LLDPE/LDPE, LLDPE/HDPE, and HDPE/LDPE blends, and they found that all three blends were miscible in the melt, but the LLDPE/LDPE and HDPE/LDPE blends exhibited two crystallization and melting temperatures melt. The melt strength of the blends increased with increasing molecular weight of the LDPE that was used. The mechanical properties of the LLDPE/LDPE blend were higher than calculated from a simple rule of mixtures, while those of the LLDPE/HDPE blend conformed to the
rule of mixtures, but the properties of HDPE/LDPE were less than the rule of mixtures prediction. On other hand Rana [11] studied the tensile properties and morphological characteristics of binary blends of the (HDPE) and (LLDPE), and she found that the mechanical properties remained invariant in the 10-90% LLDPE content. The melting endotherms and the crystallization exotherms of these blends are singlet in nature. Also Dr. Najat and Nabeela studied the change in mechanical properties (tensile, impact and hardness properties) due to photo oxidation degradation of HDPE/LLDPE blends (send for publication). In this study, the morphology and corresponding physical properties (absorption properties, and densities) of blends of HDPE/LLDPE, after and before exposure to UV light, are investigated.

2. Experiment

2.1 Materials

The neat polymers used in this study are a commercial high – density polyethylene, HDPE type (EHM 6003), that was used as a matrix, and linear – low – density polyethylene, LLDPE type 21018(461). Thermoplastic resins used in present work were locally manufactured in Petrochemical Complex (Basrah-Iraq). The important characteristics of the materials are given in table 1.

2.2 Procedure

Blends of HDPE/LLDPE were made by mixing HDPE with various compositions (0, 15, 30, and 45) % of LLDPE using two roll mills. The mixing machine is operated at a temperature of 135 °C and at speed approximately 10 mm/min. The mixing machine used for this purpose a roll mill poly mix 150P. Compression moulding was carried out in an electrically heated press (Cininnatic; an hydraulic type of compression moulding machine) the applied pressure was (10 Mpa) and the temperature was 135°C.

Standard tests of all physical and environmental properties of the prepared polyethylene blends were carried out, a climastest weatherometer type (ERICHSEN) was used, the tests were done on sets of the HDPE/LLDPE blends with different weight percents (0, 15, 30, and 45) % relative to the LLDPE by exposing the sets of the four types for 300 hours in climastest with 50 % relative humidity and temperature of 40°C, and samples were collected every 100 hours, the light source of a climastest consists of a cylindrical geometric array of fluorescent tubes, which are arranged in the center of the test chamber and emit radiation similar to that of natural sunlight. Exposing the test surface to a heated saturated mixture of air and water vapour produced condensation. Specimens were mounted on a frame, which rotates at 1 rev./min around the lamp system and the specimens were alternately exposed to ultraviolet radiation and condensation.

In order to determine the diffusion coefficient, all the specimens were placed in the water, absorption tests were conducted at temperature range (100 ±2) °C and the room temperature is 35 °C. The weight of all specimens was determined before they were put in the water (m1), after that the specimens were immersed in water at (100 ±2) °C after three hours, then the specimens were reweighed (m2) and this step was repeated to determine m3, m4. Then the variations in weight gain (mt) as a percentage of the original dried specimens were determined, and from Fik's second law, diffusion coefficient can be determined. The densities of all specimens were determined; density of test specimens was measured in accordance with ASTM D 792-86, method B. Several samples were taken from each material type. The dry weight of each sample was measured on an electronic balance, then the samples were weighed, and then submerged in ethanol alcohol; excess ethanol on the surface of
the samples was removed before weighing. The morphology evaluation was carried out using an optical microscope Nikon 540x. A small specimen was cut from the molded film of the pure HDPE and HDPE/LLDPE at different ratio of LLDPE and different exposure times.

3 Results and Discussion

3.1 Density Test

Figure 1 shows the density of HDPE/LLDPE blends as a function of % LLDPE content and at different exposure times. From this figure it is clear that there is a pronounced effect of addition of LLDPE at different weight percents ranging between (15-45) wt. % on the density of the material, LLDPE have a density lower than HDPE so increasing the amount of LLDPE in HDPE /LLDPE blends leads to decrease in the density.

Figure 2 shows the density of HDPE/LLDPE blends as a function of exposure time and at different % LLDPE content. From this figure it is clearly seen, that the increasing of the exposure time from (100) hrs to (300) hrs causes an increase in the density of the material, this may be due to the fact that increasing the exposing time causes an increase in the chain scission and cross linking due to photo – oxidation degradation.

An acceleration of water uptake was observed and an eventual reduction the weight of specimens. The results indicated increase degradation in the form of chain scission and HDPE/LLDPE debonding and matrix cracking which allowed greater infiltration of water followed by leaching of the matrix leading to a loss of weight.

The decrease in molecular weight due to chain scission will cause an increase in the crystallinity due to the ability of the short chains to be incorporated in the crystalline, as crystallinity increase, the resistance to gas and moisture vapor permeation, chemical resistance increase [13, 14].

3.2 Water Absorption Test

The percentage weight change was defined as:

\[
\text{Weight change (\%) =} \frac{\text{Weight of wet specimen} - \text{Weight of dry specimen}}{\text{Weight of dry specimen}}
\]

Figures (3-6) shows the variation in weight gain, Mt, as percentage of the original dried specimen weight, with the square root of time, t, for HDPE/LLDPE blend at different weight of LLDPE ranging between (0-45) wt. %wt. The rate of weight change increased linearly for the first (14) hours, it then decreased, the absorption percent was increased with increase the LLDPE content, witch decrease the ability of polymeric material to bearing water during service life. Water absorption causes swelling of the polymer and also acts as politicizing factor. Swelling of the resin due to the presence of the water provoked deformation in the resin rich zones so that the weakened interfaces in the
neighborhood of these zones were subjected to greater stresses and were therefore more likely to fail. The amount of water absorbed will depend primarily upon the chemical nature of the polymeric matrix and the environment to which it exposed [15].

The rate at which a material absorbs water is expressed by the diffusion coefficient. Although the diffusion coefficient is not a direct measure of mechanical deterioration, it is a relative measure of the rate at which the material absorbs water and the mechanical properties deteriorate.

The relationship between weight gain and diffusivity during initial water uptake for Fickian diffusion is given by:

\[D = \pi \left(\frac{K b}{4 M_\infty} \right) \]

Where:
- \(D \) = diffusion coefficient (m²/sec).
- \(K \) = slope of the curve of \(\sqrt{t} \) with weight gain (%).
- \(b \) = sample thickness (m).
- \(M_\infty \) = max. variation in weight gain.

Water was absorbed not only by the mechanism of Fickian diffusion but by other mechanism as well. The importance of these additional mechanisms depend greatly on the exposure time, LLDPE content and duration of immersion. Two factors seen important in trying to understand these phenomena: the presence of the HDPE/LLDPE interface should be considered as third phase and channel for water penetration. Secondly the possibility of water molecules reacting chemically or being fixed physically to the molecular structure of the matrix must be considered.

Figure 11 shows the diffusivity coefficient as a function of LLDPE content (wt %) and at different exposure times. From this figure it is clear that increasing the %LLDPE content lead to increasing the diffusivity coefficient of the material, the slight discrepancy among these values are due to differences in the LLDPE content and bonding between LLDPE and matrix.

Figure 12 shows the diffusivity coefficient of the materials as a function of exposure times and at different LLDPE content (wt %). From this figure it is clear that increasing the exposure time leads to decrease the diffusivity coefficient.

3.3 Morphology

Figure 13 shows the optical micrograph of high-density polyethylene/linear-low-density polyethylene blends obtained after melt in the two-roll mill at 135 °C at different blending ratios; the light and dark regions correspond to HDPE and LLDPE respectively. It is seen from figure 13 that HDPE (white) form the continuous phase and LLDPE (black) forms the dispersed phase for HDPE/LLDPE.

Figure 14 shows the HDPE and HDPE/LLDPE after 300 hr in UV light.

4. Conclusions

Blends of HDPE and LLDPE have been studied, the results obtained in this work showed that increasing the amount of LLDPE in HDPE/LLDPE blends leads to decrease in the density also, the density of pure HDPE and HDPE/LLDPE blends increased with the increasing the exposure time from (0 to 300) hr. The increase in density is due to the chain scission and cross linkage which occurring during exposing the material to ultraviolet radiation, and also from the results presented here indicate that immersing the HDPE and HDPE/LLDPE blends in water can produce a variety of damage. The distribution of the water, and rate at which it is absorbed, depend greatly on the weight percent of LLDPE on the exposure times. As the amount of
LLDPE is increased in the HDPE/LLDPE blends the amount of water absorbed and diffusivity coefficient, increase greatly. Also increasing the exposure times from (100) hr to (300) hr causes decrease in the absorption percent and the diffusivity coefficient. Further, optical micrograph results showed the damage obtained due to exposure to UV light for 300 hr for pure HDPE and HDPE/LLDPE blends.

References

<table>
<thead>
<tr>
<th>Property</th>
<th>LLDPE</th>
<th>HDPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY (gm/cm³)</td>
<td>0.93</td>
<td>0.963</td>
</tr>
<tr>
<td>MELTING FLOW INDEX (gm/10 min)</td>
<td>2</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Studying Of Some Physical Properties And Morphology Of Blends Of HDPE/LDPE After And Before Exposure To UV Light

Fig. 1 The density of HDPE/LLDPE blends as a function of LLDPE content (wt %) at different exposure times.

Fig. 2 The density of HDPE/LLDPE blends as a function of exposure times at different LLDPE content (wt %).

Fig. 3 The variation in weight gains with the square root of time for HDPE at different exposure times.
Fig. 4 The variation in weights gains with the square root of time for HDPE/LLDPE blend at different exposure times and at constant LLDPE content (15) wt%.

Fig. 5 The variation in weights gains with the square root of time for HDPE/LLDPE blend at different exposure times and at constant LLDPE content (30) wt%.

Fig. 6 The variation in weights gains with the square root of time for HDPE/LLDPE blend at different exposure times and at constant LLDPE content (45) wt%.
Fig. 7 The variation in weights gains with the square root of time for HDPE/LLDPE blend at different LLDPE content before exposure to UV light.

Fig. 8 The variation in weights gains with the square root of time for HDPE/LLDPE blend at different LLDPE content after (100 hr) of exposure to UV light.

Fig. 9 The variation in weights gains with the square root of time for HDPE/LLDPE blend at different LLDPE content after (200 hr) of exposure to UV light.
Fig. 10 The variation in weights gains with the square root of time for HDPE/LLDPE blend at different LLDPE content after (300 hr) of exposure to UV light.

Fig. 11 The diffusivity coefficient of HDPE/LLDPE blends as a function of LLDPE content (wt %) at different exposure times.

Fig. 12 the diffusivity coefficient of HDPE/LLDPE blends as a function of exposure times at different LLDPE content (wt %).
Fig.13 Micrographs of (a) pure HDPE and (b) for HDPE/LLDPE blend with 45% LLDPE content before exposure to UV light.

Fig.14 Micrographs of (c) pure HDPE and (d) for HDPE/LLDPE blend with 45% LLDPE content after 300 hr of exposure to UV light.