
Eng.& Tech. Journal, Vol.27 ,No. 6, 2009

* Computer Science Department, University of Technology/ Baghdad

HDNA : Heuristic DNA Computing Algorithm

Dr. Ahmed Tariq Sadiq*& Hasanen Samir Abdullah*
Received on:14/9/2008

Accepted on:31/12/2008

Abstract
The proposed system is based on embedded the heuristic search in DNA search

algorithm so to make it more efficient and flexible. The HDNA system is constructed to
improve the work of the DNA computing algorithm and enhance the measurement
criteria of it by reducing the run time and the memory capacity as well as the number of
generated random solutions (strands or states) that are needed to implement the
computing algorithm. The experimental results appear that the HDNA using A* and
Alpha-Beta is more efficient than using A* and Alpha-Beta each alone.

Keywords : DNA Computing, Heuristic Methods, A* Algorithm, Alpha-Beta
Algorithm.

 خوارزمية حسابات الحامض النووي التنقيبية الموجهه
 الخلاصة

النظام المقترح أعتمد على أساس تضمين البحث التنقيبي الموجه في خوارزميات البحث للحامض
وهذا النظام المقترح بني). HDNA(النووي، وذلك لجعله اكثر كفاءة ومرونة وقد سمي اختصاراً

رزمية الحامض النووي وكذلك في نحسين المعايير القياسية له من خلال لتطوير العمل في حسابات خوا
تقليص وقت تنفيذ الخوارزمية وسعة الذاكرة المستخدمة في العمل اضافة الى تحديد عملية توليد الحلول

النتائج المستخلصة من . الاولية والتي نحتاجها لتنفيذ الخوارزمية) أشرطة الحامض النووي(العشوائية
 و *Aب النظام المقترح أظهرت ان تطوير خوارزمية الحامض النووي باستخدام خوارزمية تجار

. معاً هو أكثر كفاءة من أستخدام كل خوارزمية على أنفرادAlpha-Betaخوارزمية

1. Introduction
There are two fundamentally

major approaches in the field of AI. One
is often termed traditional symbolic AI,
which has been historically dominant. It
is characterized by a high level of
abstraction and a macroscopic view.
Classical psychology operates at a
similar level. Knowledge engineering
systems and logic programming fall in
this category. Symbolic AI covers areas
such as knowledge base systems, logical
reasoning, symbolic machine learning,
search techniques, and natural language
processing. The second approach is
based on low level, microscopic
biological models, similar to the
emphasis of physiology or genetics.
Neural networks, genetic algorithms and
DNA computing are the prime examples
of this latter approach. These biological

models do not necessarily resemble
their original biological counterparts.
However, they are evolving areas from
which many people expect significant
practical applications in the future.
DNA computing has been extended in
their ways of representing solutions and
performing basic processes. A border
definition of DNA computing,
sometimes called evolutionary
computing, includes not only generic
genetic information but also some
aspects of Artificial Life. Other related
areas include evolvable hardware,
evolutionary robotics, ant colony
optimization and swarm intelligence [1].
2. DNA Computing

DNA is the basic medium of
information storage for all living cells.
It contains and transmits the data of life
for billions of years. Roughly 10 trillion

https://doi.org/10.30684/etj.27.6.4
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

http://www.pdffactory.com
http://www.pdffactory.com
https://doi.org/10.30684/etj.27.6.4

 Eng.& Tech. Journal, Vol.27, No. 6, 2009 HDNA : Heuristic DNA Computing
Algorithm

 1064

DNA molecules could fit into a space
the size of a marble. Since all these
molecules can process data
simultaneously, you could theoretically
have 10 trillion calculations going on in
a small space at once [2]. DNA
computing began in 1994 when Leonard
Adleman has first shown that computing
can be done using DNA also, without
using usual machine but using test tubes
etc. in biological laboratory [3]. In the
language of computer scientists, 8
binary bits correspond to 1 byte. As the
DNA bases are 4 (C, G, A or T instead
of 0 or 1), DNA requires half the
amount of base pairs, i.e. 4, instead of 8
binary bits, to make one "genetic byte".
In DNA computing, also known as
molecular computing, a DNA computer
is basically a collection of specially
selected DNA strands whose
combinations will result in the solution
to some problem, depending on the
problem at hand, technology is currently
available both to select the initial
strands and to filter the final solution
[4].

The fundamental schema of a DNA
algorithm, for solving an instance of a
combinatorial problem, is the following
[5]:

i) Generation of a pool DNA strands
encoding all possible solutions (the
solution space).
ii) Extraction of those that are the
true solutions of the given instance.
The second step is performed by a

sequence of elementary extraction sub-
steps, where at each sub-step all the
strands where a specific sub-strands
occurs are selected from the pool and
constitute the input for the next
extraction sub-step. These two steps are
usually of complexity that is linear in
time with respect to the size of the given
instance. This is the conceptual strength
of DNA computing [5].

There are some available steps
(materials and bio-laboratory
techniques) that have been used to build
the DNA based computing models.

These steps are essentially the
following:

1. Watson-Crick pairing. Every
strand of DNA has its Watson-
Crick complement. As it
happens, if a molecule of DNA
in solution meets its
complement, then the two
strands will anneal [4].

2. Polymerases. Polymerases
copy information from one
molecule into another [4].

3. Ligase. Ligases bind molecules
together. For example, DNA
ligaes will take two strands of
DNA in proximity and
covalently bond them into a
single strand [4].

4. Restriction Enzymes
(Nucleases). Nucleases cut
nucleic acids; any double
stranded DNA that contains the
restriction site with in its
sequence is cut by the enzyme
at that point [4].

5. Polymerase Chain Reaction
(PCR) [11]

 - Polymerase Chain Reaction
 - Amplifies (produces identical

copies of) selected DNA
molecules.

 - Makes 2n copies (n: number of
iteration)
 - Solution filtering or amplification
step.

6. Gel Electrophoresis [4].
 -Separates RNA, DNA and

oligonucleotides by length.
 - Nucleic acids are mixed with

porous gel.
 - Molecules can be seen through

staining or other methods.
 - Electrophoresis purifies
molecules [11].

7. DNA synthesis. It is now
possible to write a DNA
sequence on a piece of paper,
send it to commercial synthesis
facility and receive a test tube

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 Eng.& Tech. Journal, Vol.27, No. 6, 2009 HDNA : Heuristic DNA Computing
Algorithm

 1065

containing the written sequence
of DNA[4].

3. Heuristic Search Algorithms

We can saw that many of the
problems that fall within the purview of
artificial intelligence are too complex to
be solved by direct techniques; rather
they must be attacked by appropriate
search methods armed with whatever
direct techniques are available to guide
the search. These methods are all
varieties of heuristic search. They can
be described independently of any
particular task or problem domain. But
when applied to particular problems,
their efficacy is highly dependent on the
way they exploit domain-specific
knowledge since in and of themselves
they are unable to overcome the
combinatorial explosion to which search
processes are so vulnerable. For this
reason, these techniques are often called
weak methods. Although a realization of
the limited effectiveness of these weak
methods to solve hard problems by
themselves has been an important result
that emerged from the last decades of
AI research, these techniques continue
to provide the framework into which
domain-specific knowledge can be
placed, either by hand or as a result of
automatic learning [6].

3.1 A* Search Algorithm

The A* algorithm to be
discussed shortly is a complete
realization of the best first algorithm
that takes into account these issues in
detail. The following definitions,
however, are required for representing
the A* algorithm. These are in order.
Definition 1: A node is called open if
the node has been generated and the
h'(x) has been applied over it but it has
not been expanded yet.
Definition 2: A node is called closed if
it has been expanded for generating
offsprings.

In order to measure the goodness of a
node in A* algorithm, we require two
cost functions:

- Heuristic cost.
- Generation cost.
The heuristic cost measures the

distance of the current node x with
respect to the goal and is denoted by
h(x). The cost of generating a node x,
denoted by g(x), on the other hand
measures the distance of node x with
respect to the starting node in the graph.
The total cost function at node x,
denoted by f(x), is the sum of g(x) plus
h(x) [7].

Here are the basic steps that are
considered to implement the A*
procedure to solve problems in an
intelligent manner [8]:

1. Operations on states generate
children of the state currently
under examination.

2. Each new state is checked to see
whether it has occurred before
thereby preventing loops.

3. Each state n is given an f value
equal to the sum of its depth in
the search space g(n) and a
heuristic estimate of its distance
to a goal h(n).

4. States on open are sorted by
their f examined or a goal.

5. As an implementation point, the
algorithm can be improved
through maintenance of perhaps
heaps or leftist trees.

3.2 The Alpha Beta Pruning

We will discuss a special type
of algorithm, which does not require
expansion of the entire space
exhaustively. This algorithm is referred
to as alpha-beta cutoff algorithm. In this
algorithm, two extra plies of movements
are considered to select the current
move from alternatives. Alpha and Beta
denote two cutoff levels associated with
MAX and MIN nodes. As it is

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 Eng.& Tech. Journal, Vol.27, No. 6, 2009 HDNA : Heuristic DNA Computing
Algorithm

 1066

mentioned before the Alpha value of
MAX node cannot decrease, whereas
the Beta value of the MIN nodes cannot
increase. But how can we compute the
Alpha and Beta values? They are the
backed up values up to the root like
MINIMAX. There are a few interesting
points that may be explored at this
stage. Prior to the process of computing
MAX / MIN of the backed up values of
the children, the Alpha-Beta cutoff
algorithm estimates e(n) at all fringe
nodes n. Now, the values are estimated
following the MINIMAX algorithm.
Now, to prune the unnecessary paths
below a node, check whether [7]:

• the Beta value of any MIN node
below a MAX node is less than
or equal to its Alpha value. If
yes, prune that path below the
MIN node.

• the Alpha value of any MAX
node below a MIN node
exceeds the Beta value of the
MIN node. If yes, prune the
nodes below the MAX node.

Based on the above discussion, we now
present the main steps in the α-β search
algorithm.

4. HDNA: The Heuristic DNA
Computing

The new idea depends on the fact
that says “heuristic search studies the
methods and rules of discovery and
invention”, now it is the time to
discover and invent more efficient and
stronger computing fashion. The idea
suggests embedding the heuristic search
in DNA search algorithm to make it
more efficient and flexible, we can
benefit from the heuristic search
properties to improve the work of the
DNA computing algorithms to get the
same results that appear when the DNA
computing algorithm is run alone, but in
less run time required and the space area
of the computer memory that is required
to implement the algorithm. The main
two heuristic search properties that are
depended on in this work are as follows:

- Problem Reduction: very useful
aim in intelligent search
because reducing the problem
state space (according to the
heuristic function) makes the
search faster and more desired.

- Guarantee of Solution: another
useful aim in intelligent search,
is the intelligent search
algorithm must give a guarantee
to find the best solution(s).

 Here the system benefits from the
last two parts by appending the benefits
of the Alpha Beta pruning and the A*
technique, as mentioned before, Alpha
Beta pruning will reduce the problem
search space as much as possible; and
the A* technique will guarantee to get
solution(s), thus when they are applied
together in one implementation phase,
of course the results of the system are
obtained with the following properties:

1. Problem Reduction, this
property is obtained in two
ways, the main one from
applying the pruning technique
in the Alpha Beta algorithm,
while the other one from storing
process, after generating the
random solutions (strands),
which store the resulting paths
as an A* tree structure.

2. Guarantee of solution, this
property appears clearly with
applying the A* search
algorithm to those solutions
(strands) that are stored in the
A* tree structure, because the
A* search technique evaluates
each node in the tree by the
evaluating function f(n) which
is calculated as the addition of
the generation function g(n) to
the heuristic function h(n):
f(n) = g(n) + h(n).

3. Reduce the run time, according
to the above two properties the
run time is reduced to very
acceptable ratio in comparison
with run time calculated from

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 Eng.& Tech. Journal, Vol.27, No. 6, 2009 HDNA : Heuristic DNA Computing
Algorithm

 1067

applying the DNA search
algorithm alone.

4. Reduce the amount of needed
memory capacity, the process of
heuristically generating random
solutions and finding the target
(desired) solutions makes the
HDNA need less memory
capacity amount.

In the block diagram below there

are two modification steps, the first
modification is obtained from (Alpha
Beta Pruning) while the other one from
(A* search technique) and then
implement them together. Figure (1)
represents the system architecture of the
HDNA system.

The below algorithm illustrates the
general algorithm of the HDNA system.

Procedure: Preliminary Process
Input: Graph G with V states
Output: 2D matrix with Preliminary
Process File F
/*this file contains Watson-crick pairing
& restriction enzyme to each state*/
Begin
 For each state Vi in the Graph
 Make the Watson-crick pairing
 For each Watson-crick pairing(Vi)
 Begin
 Make the ligase operation
 If Vi has a connection link to

another Vj then
 Determine the cut point, K
 Do restriction enzymes between

Vi & Vj in the K point
 Store a value of one in 2D matrix

in the location ij
 Else store a value of zero in 2D

matrix in the location ij
 End;

 Store the Watson-crick and
restriction enzyme results in file
F

End.

Procedure: Alpha Beta pruning to
Generate Random Solutions (Paths)

Input: 2D matrix with Preliminary
Process File F, N
 /* N= maximum strand length
*/
Output: Tree contains Generating
Solutions (strands)
Begin
 Labeled the states as 1,2,3,…k in

ascending order of degree
 d(1)>= d(2)>=…..>=d(k)
 Give each state in the graph (except

the desired state(s)) a min value called
it Beta-Value.

 Give the desired state(s) a max value
called it Alpha-Value.

 For each state u=1,2,3,…..k in turn
 /* Initialization*/
 Begin
 Select the random state Sr
 If Sr(value) = Beta-Value then

Desired = False
 End;
 Else
 Begin
 Sr(value) = Alpha-Value
 /* desired = True */
 Repeat
 /* For each unvisited neighbor W of

Sr (Iteration) */
 Compute the number of unvisited

neighbors of W
 Select Sr+1 state
 If there are many possible choices

then select W with the smallest
label

 Until the last selected state has no
unvisited neighbors or length of
the solution (strand) = N

 Store the resulted strand in an A* tree
structure

 End;
End.

/* The result: solutions (strands) visited
states U= Sr,…..,Sk such that Sk has no
unvisited neighbors or length of the
solution (strand) = N stored as a tree
data structure */

Procedure: A*

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 Eng.& Tech. Journal, Vol.27, No. 6, 2009 HDNA : Heuristic DNA Computing
Algorithm

 1068

Input: Tree contains solutions (strands),
I.S, G.S /* where I.S = Initial State &
G.S = Goal State */
Output: Tub(b) array (Pa* solutions
(strands))
Begin
 b = 0
 Open = [I.S]
 Closed = []
 While open <> [] do
 Begin
 Remove the leftmost state from

open, call it X
 If X = G.S then
 Begin
 Return the Path from I.S to X
 Tub(b) = Path
 b = b + 1
 End;
 Else begin
 Generate children of X
 For each child of X do
 Begin
 Assign the child a heuristic
value f(n)
 Add the child to open
 End;
 Put X on closed
 Re-order states on open by

heuristic merit f(n) (best
leftmost)

 End;
 Return fail
 End;
End.
/* The result: solutions (strands) that
start and end with predefined I.S and
G.S respectively */

Procedure: Gel electrophoresis
Input: Tub(b), Pa* solutions (strands)
that were stored in Tub array, M
 /* where M = determined strand
length */
Output: strand(c) array (Pgel solutions
(strands))
Begin
 c = 0
 For i = 1 to b (Tub length)
 Begin
 If Tub(i).length = M (or >= M) then

 Strand(c) = Tub(i)
 c = c + 1
 End;
End.
/* The result: solutions (strands) with
determined length by factor M */

Procedure: Synthesis
Input: Strand(c) array (Pgel solutions
(strands)) that were stored in Strand
array
Output: Tub(index) array (Ps final
solutions (strands))
Begin
 index = 0
 For i = 1 to c (Strand length)
 Begin
 Path = Strand(i)
 For j = 1 to Path.length-1
 S = Path(j)
 For k = j+1 to Path.length
 begin
 If S = path(k) then
 Repetition = True
 Else /* Repetition = False */
 Tub(index) = Path
 index = index + 1
 End;
 End;
End.
/* The result: final solutions (strands) or
desired solutions (paths) */

Main: HDNA
Input: Graph G with S states
Output: Tub(index) array (final
solutions (strands))
Begin
 Preliminary Process;
 Alpha Beta Pruning to Generate

Random Solution (strands);
 A*;
 Gel electrophoresis;
 Synthesis;
End.

5. Case Studies

The HDNA system is constructed to
improve the work of the DNA
computing algorithm and enhance the
measurement criteria of it by reducing

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 Eng.& Tech. Journal, Vol.27, No. 6, 2009 HDNA : Heuristic DNA Computing
Algorithm

 1069

the run time and the memory capacity as
well as the number of generated random
solutions (strands or states) that are
needed to implement the computing
algorithm. To prove that the HDNA
system will work correctly, it is
considered very important matter to test
it with several applications. The
applications (we call each one a case
testing) that we selected are the
following:

1- The Traveling Salesman Problem
(TSP).
2- The Routing with Minimum Cost
Problem (RMCP).

5.1 TSP in HDNA
The traveling salesman problem is
chosen as a benchmark. The traveling
salesman problem is to find an
acceptable path(s) for a given set of
vertices (cities) and edges (links). In
addition, the solution path must contain
all the cities given, each only once, and
begins from the specified city to which
the tour ends [9].

The TSP will be implemented
via HDNA system. Resulting paths will
remain the same as those appear in
implementing DNA algorithm alone
while the measurement criteria (G.R.P,
PCR.P, R.T, and M.C) are changed to
better. Here we present practical results
that are obtained from applying the
various approaches of the HDNA
proposed method through the TSP with
various cases. Figure (2) represents the
run time comparison of implementing
the TSP via DNA, DNA with ABP,
DNA* and HDNA respectively, while
Figure (3) represents the memory
capacity comparison from the results of
TSP.

5.2 RMCP in HDNA

The following sections give a
description of two routing heuristics
developed for the HDNA system. Both
routing techniques are routed via DNA
computing algorithm. The two routing

techniques can be characterized as
follows [10]:

1. Classical Router - allows
unassigned graph nodes, which
is called Routing Problem (or
simply RP).

– Tour generated is
always feasible, that is,
all nodes will be visited
after starting with initial
node without interesting
with target node which
one is.

– Requests that cannot be
routed will be left
disconnected since
routing the request may
result in an infeasible
tour (there is no
completed routing
tour).

2. Optimal Router - allows
assigned graph nodes, it is
called Routing with Minimum
Cost Problem (or simply
RMCP).

– Tour generated may be
feasible, that is, some of
the resulting paths (at
least one) may be the
optimal ones.

– No response to the
requested path because
there is no routing path
or there are no weighted
links corresponding to
request value.

The RMCP will be
implemented via HDNA system.
Resulting paths will remain the same as
those appear in implementing DNA
algorithm alone, while the measurement
criteria (G.R.P, PCR.P, R.T, and M.C)
are changed to better. Here we present
practical results that are obtained from
applying the various approaches of the
HDNA proposed system through the
RMCP with various cases. Figure (4)
represents the run time comparison of
implementing the HPP via DNA, DNA
with ABP, DNA* and HDNA

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 Eng.& Tech. Journal, Vol.27, No. 6, 2009 HDNA : Heuristic DNA Computing
Algorithm

 1070

respectively, while Figure (5) represents
the memory capacity comparison from
the results of RMCP.

6. Conclusions

The following items represent the
important conclusions which are drawn
from the Heuristic DNA System work:

1- The HDNA system reduces the
run time to less than half time
that DNA computing algorithm
needs to implement alone and
reduces the need for the
memory capacity to one to
seven (1/7 approximately) over
the standard DNA algorithm
needs.

2- The using of the Alpha Beta
Pruning limits the generating of
random solutions (strands), the
ABP part is more efficient in
reducing the run time. On the
other hand because of using tree
structure to store the solutions
(strands) as a result of the
generation process, the A*
search algorithm is more
efficient in reducing the need
for the memory capacity.

3- The heuristic search (Alpha-
beta and A*) makes the
randomness (G.R.P) in the
DNA computing algorithm
informed randomness (guiding
the G.R.P stage) by controlling
the generation process to give
less preliminary solutions
(strands) in order to reduce the
random search space with
guarantee to get the same final
solutions (strands) than if the
DNA computing is run alone.

4- One of the difficulties that has
faced this work is the nature of
used graph(s) in each case
testing, this means that the run
time and the needed memory
capacity will increase in either
the selected graph nodes
increase or the complexity of

the graph increase (the graph
has more links or connections
between its nodes). Another
difficult case faced the HDNA
system, is the use of the A*-
search algorithm which needs a
tree structure to work on it, and
so to give appropriate results,
thus the work requires replacing
the method that is used to store
the generated random solutions
(strands) into tree structure as
an alternative storing method to
the array structure. When this
job is achieved the conversion
process adds to the HDNA
system a new powerful
property.

References
[1]. T. Munakata, "Fundamentals of
the New Artificial Intelligence",
Second Edition, Springer, 2008.

[2]. "DNA Computing, State of the
Art", CPSC 601.73
http://www.cpsc.ucalgary.ca/~omair/cps
c60173/presentation, 28-1-2003.

[3]. G. P. Raja Sekhar, "DNA
Computing-Graph Algorithms", The
Indian Programmer, Supported by Com
MaC-KOSEF, Korea, 2003.

[4]. T. Zingel, "Formal Models of DNA
Computing: A survey", Proc. Estonia
Acad. Sci. Phys. Math., 49, 2, 90-99,
2000.

[5]. G. Franco, C. Ciagulli, C. Laudanna
and V. Manea, "DNA Extraction by
Cross Pairing PCR", Springer, 2005.

[6]. M. Bramer and V. Devedzic,
"Artificial Intelligence Applications
and Innovations", Kluwer Academic
Publishers, Springer science + Business
Media, Inc., 2004.

[7]. A. Konar, "Artificial Intelligence
and Soft Computing", Behavior and

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.cpsc.ucalgary.ca/~omair/cps
http://www.pdffactory.com
http://www.pdffactory.com

 Eng.& Tech. Journal, Vol.27, No. 6, 2009 HDNA : Heuristic DNA Computing
Algorithm

 1071

Preliminary Process of DNA
Computing

Initialization by Generating
Random States (Strands)

PCR by A* Heuristic Search
Technique

Gel Electrophoreses

DNA Syntheses (Results)

Alpha-Beta
Pruning

Cognitive Modeling of the human brain,
CRC Press, 1999.

[8]. G. F. Luger, "Artificial Intelligence
Structures and Strategies for Complex
Problem Solving", Fourth Edition,
Pearson Education Asia Ltd., 2002.

[9]. J. Y. Lee, S. Y. Shin, S. J. Augh, T.
H. Park and B. T. Zhang, "Temperature
Gradient-Based DNA Computing for

Graph Problems with Weighted
Edges", Springer, 2003.

[10]. S. E. Chan, "Meta Heuristics for
Solving the Dial-A-Ride Problem", Ph.
D. Thesis, North California State
University, USA, 2004.

[11]. L. M. Adleman, "Computing with
DNA", Magazine: Scientific American,
1998.

Figure (1) System Architecture of HDNA

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 Eng.& Tech. Journal, Vol.27, No. 6, 2009 HDNA : Heuristic DNA Computing Algorithm

 1072

TSP-RUN TIME

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25

NO. OF NODES

TI
M

E
(M

s.
)

DNA
DNA+ABP
DNA+A*
HDNA

Figure (2) Run Time of TSP via Various HDNA Approaches

TSP-MEMORY CAPACITY

0

100

200

300

400

500

600

0 5 10 15 20 25

NO. OF NODES

M
EM

O
R

Y
(K

B
)

DNA
DNA+ABP
DNA+A*
HDNA

Figure (3) Memory Capacity of TSP via Various HDNA Approaches

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 Eng.& Tech. Journal, Vol.27, No. 6, 2009 HDNA : Heuristic DNA Computing Algorithm

 1073

RMCP-RUN TIME

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

0 5 10 15 20 25

NO. OF NODE

TI
M

E
(M

s.
)

DNA
DNA+ABP
DNA+A*
HDNA

Figure (4) Run Time of RMCP via Various HDNA Approaches

RMCP-MEMORY CAPACITY

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25

NO. OF NODES

M
EM

O
R

Y
(K

B
)

DNA
DNA+ABP
DNA+A*
HDNA

Figure (5) Memory Capacity of RMCP via Various HDNA Approaches

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

