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Abstract 
Turbulent flow in two-dimensional ventilated room has been numerically 

simulated in the present research. A modified form of Wilcox's two-equation LRN 
k-ω model is proposed for predicting internal turbulent ventilation flows. The 
modifications include adding a turbulent cross-diffusion term in the ω-equation, 
and re-establishing the closure constants and damping functions, with the 
application of the wall-function method. The turbulent cross-diffusion for specific 
rate, ω, is modeled with two parts: a second-order diffusion term and a first-order 
cross-diffusion term.  

The air was used as the working fluid, and the length of ventilation enclosure (9 
m), and height of ventilation enclosure (3 m). The study was made for Reynolds 
number values of (Re=7.5×103). 

A finite volume method is used with a staggered grid arrangement. The 
continuity, momentum and turbulence model equations are solved with hybrid 
method by using SIMPLE algorithm. A computer program in FORTRAN (90) was 
developed to carry on the numerical solution. The Computational algorithm is 
capable of calculating the hydrodynamic and turbulence properties such as the 
velocity, and turbulent kinetic energy, specific dissipation rate (ω), turbulent 
Reynolds stress, and terms of  convection, production, diffusion, destruction, 
turbulent cross-diffusion and square root mean of fluctuating velocity. The results 
showed the peak value of velocity near the wall jet region and negative value of 
velocity near the bottom region (floor region) i.e. recirculating zone. The 
maximum value of turbulent kinetic energy near wall jet region in the first 
horizontal section of ventilation enclosure, and the profile become flattened in the 
second section of ventilation enclosure room. The same behavior in the turbulent 
Reynolds stress distribution because depending on velocity in his calculations. The 
same behavior between production term and destruction term but the values of 
production term is positive and the value of destruction term is negative. The 
distribution approximately symmetry.  

The numerical results were compared with other previous theoretical results. 
The agreement was good, confirming the reliability of the proposed mathematical 
model and computational algorithm in investigating the performance of turbulence 
model in numerical simulation of turbulent ventilation flows.  

Keywords: Turbulence Parameters, Ventilated Rooms, turbulent ventilation flows, 
LRN k-ω model, CFD. 
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 التنبؤ العددي لمتغيرات ا�ضطراب في غرف التھوية ثنائية  البعد

   الخ�صة
البح��ث الح��الي يتض��من التمثي��ل الع��ددي للجري��ان المض��طرب ف��ي غرف��ة تھوي��ة ثنائي��ة البع��د، ت��م 

ل��رقم رينول��دز ال��واطئ،  )Wilcox'sنم��وذج  ( (k-ω)ادلتين اس��تخدام نم��وذج ا#ض��طراب ذو المع��
ا#نتش�ار المض�طرب ف�ي معادل�ة -ليتض�من إض�افة ح�د عب�ر ھذا حيث تم تطوير نموذج ا#ضطراب

ا#ض���طراب ل���ت/ئم الجري���ان  جواس���تخدام ثواب���ت تجريبي���ة لنم���وذ (ω)مع���دل التش���تت الن���وعي 
وال التخميد وتطبيق دالة الجدار في الح�ل، رقم رينولدز الواطئ، إضافة إلى استخدام دلالمضطرب 

ت��م نمذجت��ه بص��يغة  (ω)العرض��ي المض��طرب ف��ي معادل��ة للمع��دل الن��وعي للتش��تت -ح��د ا#نتش��ار
 .ا5ول حد ا#نتشار من الرتبة الثانية والحد ا5خر من الرتبة ا5ولى: نجزئيي

وأنجزت الدراسة لرقم ، (m 3)وارتفاعه (m 9)استخدم الھواء كمائع عمل، طول حيز التھوية 
استخدمت طريقة الحجوم المحددة مع الشبكة المنحرفة لحل مع�اد#ت . (103×7.5) يساوي رينولدز

باس�تخدام  SIMPLE ـحفظ الكتلة والزخم ومعادلتي نموذج ا#ضطراب ت�م باس�تخدام خوارزمي�ة أل�
الخوارزمية الحسابية لھ�ا . @نجاز الحل العددي 9الطريقة الھجينة، تم تطوير برنامج بلغة فورتران 

الق���درة عل���ى حس���اب الخ���واص الھيدروديناميكي���ة وا#ض���طرابية مث���ل الس���رعة والطاق���ة الحركي���ة 
المض�طربة، المع��دل الن��وعي للتش��تت، إجھ�اد رينول��دز، ح��د الحم��ل، ح�د ا#نتش��ار، ح��د التولي��د، ح��د 

بين�ت النت�ائج  . رعةالعرضي المضطرب والجذر التربيعي لمعدل تذبذب الس-التدمير، وحد ا#نتشار
إن أعلى قيمة للسرعة بالقرب من منطقة النفث الجداري وقيم الس�رعة الس�البة ب�القرب م�ن المنطق�ة 

، أعل��ى قيم��ة للطاق��ة الحركي��ة )منطق��ة ال��دوامات(الس��لفى لحي��ز التھوي��ة أي منطق��ة إع��ادة الت��دوير 
التھوي�ة، نف�س الس��لوك المض�طربة ب�القرب م�ن النف�ث الج�داري ف�ي المقط��ع ا5فق�ي ا5ول م�ن حي�ز 

، نف�س التص�رف كم�ا ف�ي أع�/ه@جھاد رينولدز المضطرب بسبب اعتماده على السرعة في حس�ابه 
بين حد التوليد وحد التدمير ولكن قيم حد التوليد تكون موجبة وقيم حد التدمير سالبة ويكون التوزيع 

  .تقريبا متناظر
تائج النظرية الس�ابقة وك�ان التواف�ق ب�ين النت�ائج جي�د لتأكيد النتائج العددية فقد تم مقارنتھا مع الن 

مما يؤك�د موثوقي�ة النم�وذج الرياض�ي المقت�رح والخط�وات العددي�ة المتبع�ة ف�ي تخم�ين أداء نم�وذج 
. ا#ضطراب في المحاكاة العددية لجريان الھواء في حيز التھوية

Nomenclature 
The following symbols are used generally throughout the text. Others are defined 

as and when used.  
Symbols Meaning 
ck, cω, cω2 Turbulence model constants 
fµ, fk, fω Damping functions of turbulence model 
h Height of inlet  
H Height of computational domain  
I Turbulence intensity  
k Turbulent kinetic energy 
k+ Dimensionless turbulent kinetic energy 
L Length of computational domain 
p pressure 
Re Reynolds number, Re=Uinh/ν 
Rt  Turbulent Reynolds number 
t Height of outlet 
u Velocity component in x-direction 
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u* Friction velocity   
u', v'   Fluctuating velocities in x and y directions 

respectively.  
 

22 v , ′′u , vu ′′  Turbulent Reynolds stresses  

u+ Dimensionless velocity  
urms 

Root mean square of Reynolds stress 2u′  
 

v Velocity component in y-direction   
xj Cartesian space coordinate  
x, y Cartesian coordinates  
y+  Dimensionless distance from wall surface  
 
Greek Symbol  
κ Van karman constant   
Γ Exchange coefficient of dependent variable   
µ Molecular dynamic viscosity   
µt Turbulent dynamic viscosity   
ν Kinematics viscosity  
νt Turbulent kinematics viscosity  
ρ Density of air  
σk, σω Turbulence Model constants  
τ Shear stress  
τw Wall shear stress  
ω Specific dissipation rate of k   
φ Dependent variable   
 
Subscript Symbols 
i,j Tensor notation subscript   
in  Inlet   
p First node near wall   
 
 
1. Introduction  

he air motion in a ventilated 
room is generally of an 
incompressible, non-isothermal 

and turbulent type. Nonetheless, indoor 
air flow possesses some specific 
features stemming from practical 
requirements on building ventilation. In 
many cases, ventilation flows are 
characterized by low-Reynolds-number 
(LRN) turbulence with mixing and 
recirculating air motion. Such general 
and specific flow characteristics must 
be well accounted for in turbulence  

 
 
 
modeling in order to make reliable 
system analyses by means of numerical 
simulations [1] . 

CFD has been widely applied to 
various engineering flow problems. A 
field in which CFD is becoming 
increasingly active for system design, 
optimization and diagnosis is heating  
and ventilation in buildings. One of the 
basic objectives of ventilation is to 
Control and remove pollutants and/or 
excess heat to achieve the desirable  

T
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Indoor air quality and thermal environ-
ment. CFD has been proven to be an 
efficient approach for analyzing indoor 
air flow, heat transfer and contaminant 
dispersion processes. Particularly, it has 
often been employed to explore 
ventilation efficiency and effectiveness 
to indicate whether the air motion in a 
room is well organized. During the last 
few years there has been great interest 
in developing computational fluid dy-
namics (CFD) computer programs for 
predicting the air flow in ventilated 
rooms. The majority of these CFD 
programs are based on the solution of 
Navier—Stokes equations, the 
energy equation, the mass and 
concentration equations as well as the 
transport equations for turbulent 
velocity and its scale. The numerical 
solution of these equations in two 
and three dimensions has been 
applied to flow problems ranging 
from the ventilation enclosure to the 
prediction of smoke and fire spread in 
buildings [2].  

This research is devoted to the 
application of CFD to predict the air 
movement in ventilated rooms. The 
fundamental flow and turbulence 
model equations are presented first 
and the methods used in solving them 
are then described. A brief review is 
given of the turbulence models that 
can be used to describe the effect of 
turbulent eddies in the flow. The 
application of CFD models to solve a 
range of ventilation problem is also 
given. The turbulence model is 
specially an important aspect of 
CFD. It is obvious that room air flow 
will be turbulent because of 
geometry and practical velocity 
levels, but it will not always be a 
fully developed turbulent flow. Some 
of the widely used models are 
discussed such as the k- ω model. 

 

2. Objectives of the Present Work 
The primary objective of this 

project is to evaluate the usefulness 
of computational fluid dynamic 
techniques in modeling room air 
flow. This evaluation process 
involves the implementation of 
turbulent modeling to air flow, by 
examining the effect of turbulence 
parameters on the accuracy of the 
predicted results. This will be 
achieved by numerical simulation to 
continuity, momentum, and turbulent 
equations for steady incompressible 
flow in ventilation room. Pressure 
based finite volume method with 
staggered grid is used in numerical 
solution. Cartesian velocity 
components and pressure are used as 
a dependent variable.    
3. Mathematical Model 

The partial differential 
equations are the best way to 
represent the physics of any 
engineering problems, like the 
turbulent flow problems. In this 
section can be used to predict the 
turbulent flow in two-dimensional 
ventilation room. Figure (1) shows 
the configuration and dimensions of 
the investigated flow field, for steady 
state, incompressible, two-
dimensional Turbulent flow. Where 
the dimensions are:  L=9.0 m, H=3.0 
m, h =0.168 m, t=0.48 m. 
3.1 Governing equations 

The governing equations of 
motion based on Navier-Stokes 
equations conservation form for 
continuity, momentum and transport 
equations of turbulence (k-ω 
turbulence model equations) are as 
follows [2], [3]: 
For continuity equation  

( ) ( )      1                                 0=
∂

∂

j

j

x

uρ

For momentum equation  



             
 
                                                                                     

Eng. & Tech. Journal, Vol.29, No.6, 2011                   A Numerical Prediction of the Turbulence   
                                                                                      Parameters in Two-Dimensional Ventilated       
                                                                                                                           Rooms 
     
 

1056 
 

( )

( ) ( )2                            uu
x

- ji
j

′′
∂
∂



























∂
∂

+
∂
∂

∂
∂+

∂
∂−=

∂
∂

ρ

µ
ρ

i

j

j

i

jij

ji

x

u

x

u

xx

p

x

uu

            Where the term ( jiuu ′′− ρ ) is 

the viscous stress tensor (turbulent 
Reynolds stress) 

( )3  
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δij=1 for i=j and δij=0 for i≠j, in 
Cartesian coordinates system 
expressed as  
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3.2Turbulence Transport 

Equations 
The k-ω model is gaining in 

popularity, the model was proposed 
by Wilcox [3]. In this model the 
standard k equation is solved, but as 
a length determining equation ω is 
used. This quantity is often called 
specific dissipation from its 
definition ω∝ε/k. In the k-ω model, 
it is assumed that the turbulence is 
characterized by a velocity scale, k1/2, 
and a length scale, k1/2/ω. The eddy 
viscosity is thus formulated as 
νt∼k/ω. Wilcox termed ω as the 
specific dissipation rate of k, which 
is actually the reciprocal turbulent 
time scale, 1/τ. The transport 
equations for k and ω, together with 
the equations for continuity and 
momentum, form the mathematical 
description. In Wilcox's k-ω model 

the model transport equations for k 
and ω in are as follow: 
  

( ) ( )5    
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∂
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Where Pk is the production of 
turbulence energy, and for 
incompressible flow takes the form  

( )6               
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With the Kolmogorov-

Prandtl relation, the eddy viscosity, 
µt, is obtained from  

                                                                              
ω
ρµ µ

k
ct =

The values of model constants are 
tabulated in table (1).  
 
3.3 The Low Reynolds Number 
(LRN) k- ωωωω Model 

A model which is being used 
more and more is the Wilcox's k-ω 
model (standard k-ω model). The 
standard k-ω model can actually be 
used all the way to the wall without 
any modifications. The Low 
Reynolds Number (LRN) k-ω Model 
read as the same equations above but 
the changes on the standard model 
are [4], [5]. 
The cross diffusion terms will be add 
to the ω equation as  
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( )9 ctermdiffusion  














∂
∂

∂
∂=

ji

t

x

k

x

k

k
cross

µ
ω

The turbulence constants for Low 
Reynolds Number turbulence model 
becomes as    

( )10                                  

c , c , k

µ

ωµµµµ

fc

fcfcc

w

k

=
==

 

The damping function for 
high Reynolds fµ=1, The damping 
functions for low Reynolds number 
for the eddy (turbulent) viscosity by 
the turbulence models are listed 
below: 

(11)  
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( )13     
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exp3.41
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Where Rt is the turbulent Reynolds 
number, and  

( ) ( )14                             ωνkRt =  

Or ( )15                             νν ttR =  

In low Reynolds number 
(LRN) k-ω turbulence model, the 
closure constants are revised in table 
(2) [4], [5]. 

If z represents k or ω, the 
turbulence transport equations in a 
two equations model, in general form 
for the turbulent kinetic energy k, 
and the dissipation rate of turbulent 
kinetic energy ω, these equations can 
be written as [6].  

( )

( )16                              CE- z z
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x

zu
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∂
∂+=

∂
∂

σ
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Where Pz is the production 

term, Ez is the destruction term and 
CDz is cross-diffusion term. The two 
additional terms in ω-equation as 
compared with Wilcox's model. 
These terms are given in table (3).  
 
3.4 Boundary Conditions  

Several different boundaries 
were encountered in this work, 
inflow, outflow, solid wall and 
homogeneous boundaries. Each has 
its own specification, which are 
summarized below.  
 
3.4.1 Inlet Flow 

These have been used in the 
computation of ventilation flows with 
two equation turbulence models. The 
velocities and transport quantities 
over the inlet boundary are usually 
prescribed, either from experimental 
data from pre-calculated distribution 
for, e.g., channel flow [2], [7]. 

( ) ( )17                       
2

3

0

2/1

2















=

=

=
=

in

in
in

inin

in

k
C

IUk

v

Uu

l
ωω

 

Where I is the turbulence 
intensity and can take a value 
between 0.01 to 0.1 (it is usally set 
been in a range of (0.02 ∼ 0.04) for 
reciculating flows), see [8], Cω is a 
constant (Cω=1/0.09) and inl  is 

specified as fraction of inlet 
size( )10hin =l . 
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3.4.2 Outlet Flow  
Neumann conditions have 

often been set for the flow variables 
at outlet flow boundaries, giving as    

( )18           0
xx

kv

x

u =
∂
∂=

∂
∂=

∂
∂=

∂
∂ ω

x
 
3.4.3 Wall Boundary Condition 

The common kinematic 
(non-porous wall) and viscous (no 
slip) conditions were used at the 
walls. The wall boundary conditions 
can be summarized as [5]. 

               
0

yx

    0









=
∂
∂

=
∂
∂

===
ωω
kvu

                        (19) 

The natural way to treat wall 
boundaries is to make the grid 
sufficiently fine so that the sharp 
gradients prevailing there are 
resolved. Often, when computing 
complex flow, that requires too much 
computer resources. An alternative is 
to assume that the flow near the wall 
behaves like a fully developed 
turbulent boundary layer and 
prescribe boundary conditions 
employing wall functions. The 
assumption that the flow near the 
wall has the characteristics of that in 
a boundary layer if often not true at 
all. However, given a maximum 
number of nodes that can afford to 
use in a computation, it is often 
preferable to use wall functions 
which allows us to use fine grid in 
other regions where the gradients of 
the flow variables are large. When 
wall functions used k and ω are 
prescribed as [9], [10].  
 

( ) ( )20                         25.0
pkp uck −=

( )21                              
6

2
2 p

p yc

v

ω

ω =

 

3.5 Turbulent Quantities  
For the components parallel 

to the wall we prescribe the friction 
velocity, wall shear stress, and 
dimensionless quantities as [11], [7]. 

( ) ( )22                            
ln* +=

Ey

u
u pκ

 

( )23                 2
*, u

y

u

p

p
ptw ρµτ ==

( )24                            *

µ
ρ pyu

y =+  

( )25                                   
*u

u
u =+  

( )26                                   
2
*u

k
k =+

 
Where κ is Von Karman 

constant and its value 0.4187, the 
value of the E constant is 8.8 [12]. 
Generally the law of the 

wall is valid for 30 < y
+
 < 60.  

4. Numerical Analysis 
The mathematical 

formulation of the fluid flow problem 
is governed by basic conservation of 
mass, momentum and turbulence 
model equations. 
4.1 Descretization Equation for 
Two Dimensions  
A portion of a two-dimensional grid 
is shown in Fig. (2). For the grid 
point (P), points (E) and (W) are its 
x-direction neighbors; (N) and (S) 
are the y-direction neighbors, 
locations of them exactly midway 
between the neighboring points [13], 
[14]. 
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The descretization equation 
based on the differential equations of 
the momentum equations and 
turbulence model equations can 
easily be seen to be: 

( )27                          PNN

SSWWEEPP

Sa

aaaa

++
++=

φ
φφφφ

 

And 
( )28 PNSWEP Saaaaa ++++=  

At this point, it is interesting to 
examine the physical significance of 
viscous coefficients in the 
descretization equations. The 
neighbor coefficients (aE,…,aN) 
represent the connective between the 
point (P) and the corresponding 
neighbor. The center point 
coefficient (aP) is the sum of all 
neighbor coefficients. But the source 
term (SP) in the momentum equations 
and turbulence model equations.  
 
4.1.1 Dimensional 
Descretization 

The general form of the 
transport equation may be written    
as [13]: 

( ) ( )29                    φSJ
x i

i

=
∂
∂

                                                            

Where          

( )30               
i

ii x
uJ

∂
∂Γ−= φφρ φ                                

Where iJ  represents all the 

flux due to both diffusion and 
convection. The source term may be 
expressed as a linear expression: 

( )31                        cbS P += φφ  

The source term in above equation 
can be summarizing in table (4). 
4.2 Solution of the Descretized 

Equation (Pressure-linked 
Descretization Method) 

One of the most widely used 
method that links the velocity field to 

the pressure field; in order to satisfy 
the continuity is the (SIMPLE) 
presented by [13] [Semi Implicates 
Methods for Pressure Linked 
Equation], in the solution presented 
below a staggered grid is employed. 
The SIMPLE assumes that, 

( )32   
   

 ;    ;  
*

**







′+=

′+=′+=

vvv

uuuPPP

 
For the computational 

convenience,  

∑∑ ′′
i

ii
i

ii vaua , are set to zero, 

we get  
( )

( ) ( )33     
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vv
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Substituting these velocities 
into the continuity equation we 
obtain, 

( )34          cPaPa
i

ii
i

pi +=′ ∑∑
 

Where c must equal to zero 
to get more accuracy. 

( )35   SNWE
i

i aaaaa +++=∑
 

( )36                                     SS

NNWWEE
i

Pi

Pa

PaPaPaPa

′+

′+′+′=′∑

 
The procedure for applying 

the SIMPLE method can be 
summarized as: 

The procedure for applying 
the SIMPLE method can be 
summarized as: 
1. Use any suitable initial values. 
2. Guess the pressure fieldp ′ . 
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3. Solve the momentum equations to 
find out u* and v*,          equation 
(32). 
4. Solve the p′ equation,    equation 
(34). 
5. The pressure field is obtained by 

adding p′ to *p  . 
6. Obtain the velocity components u 
and v from equation (33). 
7. Any variable that influences the 
solution is solved for (k and ω) 
equations. 
8. Iterate using the correct pressure p 

as the new guessed pressure
*p , 

return to step (3) and    
repeat the whole procedure until 
converged solution is obtained. 

Since the solution is non-
linear, it is sometimes necessary to 
under relax the solution to avoid 
divergence. Under-relaxation is 
implemented as, 

( ) ( )37      1 °−+= PP
r

P φαφαφ                   
Where 

r
Pφ  is the new under-relaxed value 

of Pφ . 

°Pφ is the value of Pφ  from the 
previous iteration. 

Pφ  is the obtaining value. 
The value of the under-relaxation 
factor (α) should be in the range (0 < 
α ≤ 1). Typical values for (α = 0.5) 
for [u, v, k and ω] and (α = 1) for (P). 
A computer program in (Fortran 90) 
was developed to execute the 
numerical algorithm which is 
mentioned above. 
 
5. Results and Discussion  

The present calculations was 
carried out for the flow at 
Re=7.5×103 (Re=(Uinh/ν), Uin=0.71 
m/sec, ) as Low Reynolds Number 

for turbulent ventilated flow and 
L/H=3 in a two-dimensional 
turbulent flow of confined enclosure 
ventilation room. A Finite volume 
code is used, the calculations were 
performed with (70×58) cells for x 
and y direction respectively. For 
space discretization, hybrid scheme 
is used.    

Figure (3) shows velocity vector 
plots of computational domain of 
ventilation enclosure. This accounts 
for the entrainment process between 
the wall jet and it's surrounding. A 
wall jet initiated from inlet reaches 
the opposite wall and overall 
recirculation (vortex) is created. 

Figure (4) shows the distribution 
prediction of velocity profiles at 
vertical cross section x=H and x=2H. 
We see positive values of velocity 
near wall jet region as peak velocity 
in the wall jet region. Then decrease 
toward the region of recirculation 
(re-attachment region) i.e. near the 
floor. This is also reflected in figure 
(5) in the distributions along the two 
horizontal section bottom (y=h/2) 
and top (y=H-h/2).  

Figures (6) and (7) show the 
distribution of turbulent kinetic 
energy in vertical section at x=H and 
x=2H, notice that the maximum 
value of the kinetic energy in region 
near the wall jet and decreases in the 
region near the floor also we see the 
profile more flattened in x=2H . 
Figure (7) illustrates the distribution 
of turbulent kinetic energy in top 
(y=H-h/2) and bottom (y=h/2), we 
show the value of turbulent kinetic 
energy in top region is grater than in 
bottom region because the value of 
velocities in these region.   

Figure (8) shows the distribution 
of Reynolds stress in the section of 
the vertical at x = H and x = 2H, 
where we note that the largest value 
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of Reynolds stress at a section 
blowing wall jet of any slot-equipped 
because of the velocity have the 
greatest value in this region and 
gradually decreases in other areas 
that up to its lowest value in the 
region close to the floor region. A 
figure (9) shows the distribution of 
Reynolds stress in the horizontal 
section at the bottom y=h/2 and the 
top y=H-h/2 where we note clear 
oscillation in the values of Reynolds 
stress in the bottom region than it is 
in the top region. 

Figures (10) shows the 
distribution of specific dissipation 
rate, ω, the profile of ω in the vertical 
cross section at x=H and x=2H the 
results are similar in behavior, the 
variation can be mainly observed 
from the horizontal distribution as 
shown in figure (11), where the peak 
value of the specific dissipation rate  
in section y=H-h/2 as sharper peak a 
riser. The largest contribution, 
usually, occurs in the immediate 
proximity of the wall, where the 
gradients for both k and ω are rather 
large. This peak corresponds to the 
turning separation point in front of 
the opposite wall, where the wall-jet 
flow starts to descend.   

Figure (12) shows the vertical 
distribution of the production and 
destruction, terms at x=2H, where we 
note that the values of production 
term are positive and which 
represents the gain while the values 
of destruction loss. We observe the 
same behavior in the values of the 
positive end of production and the 
losses represented by the dispersion 
term, but the behavior is different as 
shown in figure (13). The production 
term, as expected, has been reduced. 
Along the central line of the wall jet 
region (y = H ��h/2), there is a peak 
in the balance (budgets) in front of 

the opposite wall. This peak is 
largely damped in the ω-equation, 
owing to the turbulent cross-diffusion 
term. 

Figure (14) shows the 
distribution of the convection and 
diffusion terms in a vertical section at 
x = 2H, where the behavior a close 
between them, while we note the 
different (disposal) of the various 
through section of the horizontal at 
y=H-h/2 and the values are close in 
the middle of the field arithmetic, 
while there is variation in the values 
in the areas of the beginning and the 
end of the horizontal section and as 
shown in figure (15).  
Figure (16) shows the distribution of 
turbulent cross diffusion through the 
vertical section at x=2H, where we 
note that a value ranging between 0 
and -8 and close to zero in the middle 
of the vertical section. As shown in 
figure (17) the distribution of the 
turbulent cross diffusion through the 
horizontal section at y=H-h/2 where 
we note there oscillating (fluttering) 
in values, especially in the region 
near the blowing wall jet while takes 
the stability form in the region far 
from the slot processing. The 
turbulent cross-diffusion term plays a 
role mainly in the near wall region, 
where the gradients of k and ��are 
rather large and usually of opposite 
signs. This will therefore drag down 
the specific dissipation rate and 
increase the kinetic energy. 

Figure (18) shows horizontal 
distribution for urms (root mean 
square of fluctuating velocity) where 
we note the different behavior in the 
area near the exhaust wall jet, but 
here the disposal or different 
behavior in the vicinity of the ground 
floor region also built figure (19) 
vertical distribution at the center line 
of section x=2H.  
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Figures (20) and (21) show 
comparison between velocity profile 
at x/H=2 and y=H-h/2 respectively 
with the experimental results of [15]. 
The best agreement at bottom region 
and the difference reach to (12.7%) 
approximately at y/H=0.93 in figure 
(20), while in figure (21) the best 
agreement in wall jet region and the 
maximum difference between these 
results reach to (15.8%) 
approximately at (x/H=2.7). Figure 
(22) shows the comparison between 
distribution of velocity profile at 
center line of vertical section with 
experimental data [16], this shows 
good agreement. Figure (23) show 
the distribution of dimensionless 
streamwise velocity in comparison 
with data predicted from models by 
[8] for channel flow and Re=104, 
with aspect ratio (AR=5). Where the 
program was executed to these 
conditions, the present model yield 
very good agreement with this result.  
 6. Conclusions  

A modified form of Wilcox's two-
equation LRN k-ω model is used for 
predicting internal turbulent flows in 
ventilation rooms. The modifications 
include adding a turbulent cross-
diffusion term in the ω-equation, and 
re-establishing the closure constants 
and damping functions. The model 
combines a wall function and low-
Reynolds-number (LRN) approach. 
The modified model reproduces 
correct near wall asymptotic 
behaviors, and leads to prediction of 
turbulent flow in ventilated rooms.  

The peak value of velocity near 
the wall jet region and negative value 
of velocity near the bottom region 
(floor region) i.e. recirculating zone. 

The maximum value of turbulent 
kinetic energy near wall jet region in 
the first horizontal section of 
ventilation enclosure, and the profile 

become flattened in the second 
section of ventilation enclosure 
room. The same behavior is seen for 
turbulent Reynolds number. 

A similar behavior between 
production term and destruction term 
was seen. The distribution is 
approximately symmetry.      

The distribution of turbulent 
cross diffusion term is symmetry 
approximately and the value lies 
between 0 and -8. A turbulent cross-
diffusion term was added to the w-
equation in analogy to its molecular 
counterpart. 

Turbulent cross-diffusion term in 
modified ω-equation play a role in 
the near wall region where the 
gradients of k and ω are rather larger. 
This will drag down the specific 
dissipation rate and increase the 
turbulent kinetic energy.  

The peak in the horizontal ω-
distribution at section y=H-h/2 is the 
greatest and its due  larger to the 
turning or separation point in front of 
opposite wall where the wall-jet flow 
starts to descend.   

The present model has shown a 
reasonable ability to simulate the 
turbulent flows in two-dimensional 
ventilated rooms. 
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Table (1) Turbulence model constants for the k-ωωωω equations. 

Constant cµ ck cω1 cω2 σk σω 

Value 1.0 0.09 0.56 0.075 2.0 2.0 
 

Table (2) Turbulence model constants for low Reynolds number k-ωωωω model. 
Constant cµ ck cω cω1 cω2 σk σω 

Value 1.0 0.09 0.75 0.42 0.075 0.8 1.35 
 

Table (3) Production, destruction and cross diffusion terms in k-ωωωω model. 
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Figure (1): Show configuration of the investigated ventilated room. 
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Figure (2): Show control volume for two-dimensional 
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Figure (3): Velocity vector in ventilation room. 
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Figure (6)Distribution of turbulent  
Kinetic energy profile at vertical  

cross section for different location of x. 
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Figure (12): Distribution of destruction and 
production  terms at vertical  

cross section  for x=2H. 
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Figure (13) Distribution of destruction and 
production terms at horizontal  

cross section for y=H-h/2. 

-2 -1 0 1 2 3 4 5 6 7 8

Concvection & Diffusion Terms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
/H

Convection Term
Diffusion Term

Figure. (14): Distribution of convection 
and  

diffusion terms at vertical cross section  
for x=2H. 

0 0.5 1 1.5 2 2.5 3

x / H

-10

0

10

20

30

40

50

60

70

80

C
o

n
ve

ct
io

n
&

D
iff

u
si

o
n

te
rm

s Convection Term
Diffusion Term

Figure (15): Distribution of convection 
and diffusion terms at horizontal cross 

section for y=H-h/2. 
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Figure. 18: Distribution of root mean 
square velocity fluctuation (urms)  

at y=H-h/2. 
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Figure. 19: Distribution of root mean 
square velocity fluctuation (urms) at x=2H. 
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Figure. 20: Comparison between the present 
work and past work for Re=5000 at x/H=2. 
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Figure. 21: Comparison between the present  
work and past work for Re=5000 at y=H-h/2. 
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Figure. 22: Comparison between 
the present work and past work  

for Re=5000 at center line.  
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