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Abstract 
Output-feedback (observer-based) robust and optimal control law which guarantees 

global (local) asymptotic stability in probability for nonlinear stochastic dynamic 
system are stated, developed and proved with the help of stochastic Lyapunov function 
approach supported by necessary theorems and an illustrative example. The inverse 
optimal stabilization in probability with suitable performance index has also been 
stated and developed. 
Keywords:  Backstepping, control Lyapunov functions, inverse optimality, stochastic 

nonlinear output-feedback systems, stochastic stabilization. 

 غير الخطية التصادفية ومعكوس ا�مثلية للمخرجات-قابلية ا�ستقرارية ا�رجاعية

الخ�صة

لقد تم عرض وتطوير وبرھان مدعم بالمبرھات بمس�اعدة دال�ة لي�ابونوف التص�ادفية، النظري�ات       
) (ص�لمس�تند عل�ى نظ�ام دين�اميكي مخم�ن ل(ارج�اعي -الكافية مع مثال تطبيقي، !يج�اد مس�يطر مخ�رج

لنظ�ام ) المحلي�ة(ا!حتمالي�ة المطلق�ة -رصين وقانون السيطرة ا!مث�ل ال�ذي يض�من ا!س�تقرارية المحاذي�ة
ا!حتمالية بوجود دال�ة -تم عرض وتطوير لقابلية السيطرة المثلى العكسية. ديناميكي تصادفي غير خطي

 .ھدف م(ئمة

Introduction 
ittle attention until recently.
Efforts toward (global)
stabilization of stochastic 

nonlinear systems have Despite huge 
popularity of the linear-quadratic-
Gaussian control problem, the 
stabilization problem for nonlinear 
stochastic systems has been receiving 
relativelyBeen initiated in the work of 
Florchinger [5–7] who, among other 
things,  
 Extended the concept of control 
Lyapunov functions to the stochastic 
setting. A breakthrough toward 

arriving at constructive methods for 
stabilization of broader classes of 
stochastic nonlinear systems came 
with the result of Pan and Basar [16] 
who derived a backstepping design 
for strict-feedback systems motivated 
by a risk-sensitive cost criterion. 
Deng and Krsti´c [2-4] presented the 
first result on global output-feedback 
stabilization (in probability) for 
stochastic nonlinear continuous-time 
systems. Simpler inverse optimal 
control laws were designed for strict-
feedback systems which guarantee 
global asymptotic stability in 
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probability. The output-feedback 
problem had received considerable 
attention in the recent robust and 
adaptive nonlinear control literature 
[1], [8-13], and [15]. In this paper, we 
present two results, first address the 
output-feedback global stabilization 
problem for stochastic nonlinear 
systems, second, a robust and optimal 
control law are designed which 
guarantees global asymptotic stability 
in probability for some dynamic 
systems in the presence of output 
observer.  

  The output feedback (observer-based) 
backstepping control law which 
guarantees global asymptotic stability 
in probability has also been discussed 
supported by some theoretical 
justification and illustration.  

2. Preliminaries on Stability In 
Probability 

     Consider the nonlinear stochastic 
system of the form 

 
where is the state, w is an r-

dimensional independent standard 
Brownian motion, and  

and  are locally 
Lipschitz functions and satisfies 

, , where r < n. 

Definition (2.1) [3] 
The equilibrium x = 0 of equation (1) 

is said to be globally asymptotically 
stable in probability if for any to ≥ 0 
and ∈ > 0, 

 

and for any initial condition x(to), 

. 

2.1 “Young’s Inequality” [3] 
  This inequality is mainly used in the 

simplifications of this work which is 
formed as follows: 

 
                    
where ∈ > 0, the constants P > 1, q > 1 

which satisfies the relation: (P -1) (q -
1) = 1 and (x, y)  R2n. 

Theorem (2.1) [14] 
Consider the nonlinear system of 

equation (1) and suppose that there 
exist a positive definite, radially 
unbounded, twice continuously 
differentiable function V(x) such that 
the infinitesimal generator 

 
Is negative definite. Then the 

equilibrium point  of the above 

system is globally asymptotically 
stable in probability, where Tr (.) 
operator is standing for the trace 
operation. 

3. Output-Feedback Stochastic 
Nonlinear Stabilization In 
Probability 

In this section we deal with nonlinear 
output-feedback systems driven by 
Brownian motion and some of its 
theoretical results. This class of 
systems is given by the following 
nonlinear stochastic differential 
equations. 

Consider the stochastic nonlinear 
system described by: 
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1.  is the 

state,  
2. w is an r- dimensional 

independent standard Brownian 
motion 

3. f=(f1, f2, ….., fn)
T, is a vector 

valued function which satisfies: 
 
• ,   

•  

• 
 

where  is a positive definite matrix, 

and λmax( ) is the largest eigenvalue 

of . 

4.  are r-vector-valued 

smooth functions with 
=

 
5.  are r-vector-valued 

smooth functions with 
 

 
6. , ,  are assumed to 

satisfy Lipschitz condition. 
7. The dynamic observer system 

is suggested as follows:  

   

        

                       
    

 
 

8. The observation error      
satisfies: 

 

 

 

                                                  …..(7) 
      Or in vector form, we can write: 

                                                               
…..(8) 

thus 
    

 

  where  A=  ,   

LC = 

      

and thus      
    

 

 
where  is designed to 

be asymptotically stable, the 
coefficients Li, i=1,…,n are computed 
in a way that guarantee asymptotic 
stability of  (if possible). 



Eng. & Tech. Journal, Vol.29, No.7, 2011                           Output-Feedback Stochastic Nonlinear     
                                                                                         Stabilization and Inverse Optimality 

 
                         

1255 
 

Now the entire system can be 
expressed as: 

 
And 
 

 

 
 

                                             

      

                   

 
where   

9. The r-vector-valued smooth 
functions  and  satisfies 
the following imposed conditions, 
respectively: 

      

   

 
  
    where  are positive definite 

matrices, and λmax( ), λmax( )  are 

the largest eigenvalues of  
respectively. 

10.  Since 

, the  will vanish at 

 as well as at 

 where . 

Thus, by the mean value theorem 
 can be expressed as:  

 
 

             where  are smooth 

functions.                     
On depending on the conditions of 

dynamic system (4), the following 
main theorem is stated and proved to 
guarantee the global asymptotic 
stability in probability to the 
stochastic dynamic control system 
defined by equation (4). 

THEOREM (3.1)  
Consider the stochastic dynamic 

control system defined by equation 
(4), and assume that the dynamic 
observer system is designed to be 

 
a sequence of stabilizing functions 

 , where 

, will be 

constructed recursively to build the 
Lyapunov function of the form 

 

where P is a positive definite matrix 
which satisfies the following 
algebraic equation: 

 
where  

               
and if the following are satisfied: 
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And the control is designed as: 

 
Where u is standing for xn+1 as 

discussed in equations (4) and (10) of 
the previous section (3). Then the 
equilibrium point  of the 

closed-loop nonlinear stochastic 
system (10) is globally 
asymptotically stable in probability. 

 
Proof:         
Since we have by equation (15) that: 

 
According to Itô differentiation we 

have:  

 
where the second part of the above 

equation (16) is computed as follows: 

 
Set the Lyapunov function as follows: 

     

where P is a suitable positive definite 
matrix will be designed later on and 
the above form indicates that the first 
term constitutes a Lyapunov function 
for the  system, 

while the second term is a Lyapunov 
function for the   system. 

Now, we start the process of selecting 
the functions  to make  

negative definite. Along the solution 
of equations (9) and (16), from 
definition of  (equation (3)), we 
have that: 

 
Since we have  

 
thus 

 

 

 
Now, by applying Young’s inequality 

of equation (2) onto some terms of 
equation (20), the following 
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simplifications are needed and as 
follows: 

(Note that the values of p and q will be 

selected as: ) 

 

 

 
where  

 
and is the largest value of   for  

i=1,2,..,n. 

 

 
        since we have by the imposed 

condition of equation (11) we get: 

 
         (where we select the values of p 

and q as ) 

 

 
         (where the values of p and q as 

) 

, with reference to [14] we have: 

   

 

 

   , 

finally applying Young’s inequality 
with  , gives: 

 
 

 

 

 
    with the help of Young’s 

inequality,  , we have: 

 
7.  

 is simplified as follows: 

 
where 

 
   

 

 
                 

 

thus, we get: 

 
Now, by substituting the equations (21-

29) into equation (20), we have: 
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At this point, we can see that all the 

terms can be cancelled by u and . 

If we choose , , , ,  to 

satisfy: 

 
and  and u as: 

 

 

 
where  0, then the infinitesimal 

generator of the closed-loop 
stochastic system (9), (16) and (33) is 
negative definite, that is: 

                    

                                                                             

(34) 
  with (34) and hence , and 

from theorem (1) the critical point of 
(4) is globally asymptotically stable 
in probability. That completes the 
proof. 

4. Inverse Optimal Output-Feedback 
Stabilization 

After considering the stabilization of 
feedback stochastic dynamical 
systems in the previous section we 
shall show how our backstepping 
design which achieves stability can 
be redesigned to also achieve inverse 
optimality. 

Theorem (4.1) [4] 
Consider the simple class of nonlinear 

stochastic dynamical system 
described by: 

 
                                    

 

                                      

such that , with the suggested 

Lyapunov function of the form 

 
if there exist a continuous positive 

function  such that the 



Eng. & Tech. Journal, Vol.29, No.7, 2011                           Output-Feedback Stochastic Nonlinear     
                                                                                         Stabilization and Inverse Optimality 

 
                         

1259 
 

control law of the above dynamical 
system can be rewritten 
as

 

then the control 
law

 

solves the problem of inverse optimal 
stabilization in probability. 

Theorem (4.2)  
Consider the nonlinear stochastic 

dynamical system described by 
equation (4) assuming that the 
conditions of theorem (2.1) are 
satisfied, if there exist a continuous 
positive function  such that 

the control law of theorem (3.1) can 
be rewritten as: 

 
Such that , with the suggested 

Lyapunov function  
             

 

then the control law 

  
solves the problem of inverse optimal 

stabilization in probability. 
Proof  
If we consider carefully the last bracket 

of equation (30), every term except 
the second, third, fourth, fifth, sixth, 
seventh, and eighth, has zn as a factor, 
with the help of Young's inequality, 
we have:  

1- 

 
    

 

 
3

 

  

 

 
 6- To simplify the third term we use 

the equation: 
            
           thus                                     
                

 
           substitute it back in the third 

term to get: 

 

 
Thus, v is given as:- 
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if 1, 2, ,  4,  5,  6,  

7,

: 

 
 

 
where Si are those in (33),  and 
 

 

 
           Then 

 

Thus we get: 

 
Thus, according to theorem (4.2), we 

achieve not only global asymptotic 
stability in probability, but also 
inverse optimality, which completes 
our proof. 

5. Algorithm   
A robust controller stabilization in 

probability of the non-linear 
stochastic system presented in 
equation (4) with linear dynamic 
observer of equation (6), is found 
using the following steps. 

Input : The dynamic control system 
described by  

             

 
            

              

 
Output:  Robust stabilizing control u in 

probability and the unknown design  
               positive functions  , for 

backstepping procedure, 
  

               as well as a suitable stabilized 
Lyapunov function . 

Step 1:  Check Lipschitz conditions for 
the functions   otherwise,  
either 

              approximate the function by 
another  one that  satisfies  the  
Lipschitz      

              condition or change the space 
into another one to ensure the 
condition  
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              is satisfied “the problem of 
extension”, or go to  the last step 
(12),  for  

              stopping the algorithm work. 
Step 2:  Define the following 

(suggested) dynamic observer:  

 
                 

 
Step 3:  Set the error vector 

 

Step 4:  Compute  

using Itô formula such that: 

 
        or     
    

 
 

 
Step 5:    Compute   

in order to make  stable.  

Step 6:     Find the unique positive 
definite matrix P of the following 
linear  

                 algebraic Riccati equation: 

 
Step 7:     Suggest the Lyapunov 

function of the form: 

 
                 where 

 

Step 8:    As  discussed  in  theorem  
(4.1) above,  select a  suitable values 
for  and  to satisfy: 

 
 
              where  are  

positive  definite  matrices,  and 
λmax( )  is  the  

              largest eigenvalue of , 

λmax( ), λmax( ) are  the largest 

eigenvalues     
             of   respectively  

and  is   the  largest  value  of    

for   
              i=1,2,..,n. 
Step 9:    Compute  and u using 

equations  (32) and  (33)  in  the  
main  theorem (4.2). 

Step 10:    On  using  the  results  of   
the  previous  steps,   the  
infinitesimal  generator     will   be 
negative, i.e. 

 
                    where 

 

Step 11:    Back  substitution  the  
values  of  step (10) into step (7) 
making the Lyapunov function of   
step (7) is completely defined. 

Step 12:    Stop “the algorithm work is 
completed”. 

6. EXAMPLE 
Consider the following non-linear 

dynamical system  
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Check Lipschitz Condition for   

     Check for :      

  
1. Check the Lipschitz conditions 

for    Thus 

 satisfies 

Lipschitz condition 

  
      3. Check the Lipschitz condition 

for the function  satisfies:- 

 

The observer system is: 
  

  

  

  
 

 
The error is computed as follows: 
 

  
we choose the values of the above 

uncounted matrix in order to satisfy 

the equation   and 
computing P, after choosing the 
values of ci, i=1,…, 4, and computing 
the values of Li we have: 

  

  
  where the eigenvalues of P are  

  

  

 

 
b is positive constant. Compute  

such that 

 

 
 1= 2= 3= 4 =1 , =0.3,  =1, =0.4 

=10000(516.2997) +2(516.2997)-
(0.0003) (0.01)2 (516.2997)4 
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  (0.0003)  

(0.02)(516.2997)4 +  - 

+ (0.36) + (0.64)  

=4558081.389  

Find  and u:- 

1 S1z1 L1 (c1x1+c2x2+c3x3)  

  z1 

2 L2

 ( )T   

    4/3 z2  

 ( )4 z2   ( )4 z 

3= - s3z3 -L3(c1x1+c2x2+c3x3) 

+  ( e+1 

+Le(c1x1+c2x2+c3x3)) +  cixi+1   

if i(xi) + ( ) ( ) 

( )T +  

i( i)
T -  3 

-     -  

 z3 -   z3  

u =  [-  -  +  

 +  +   

(  +   

( )T +   

 T-  

-  -  4/3  

-    -   ] 

 
7. Conclusions 
1. A robust and optimal control 

law which guarantees global 
asymptotic stability in probability has 
been designed. The output feedback 
(observer-based) backstepping 
control law which guarantees global 
asymptotic stability in probability has 
been also discussed and proved 
supported by some theoretical 
justifications and an illustration. 

2. A large class of nonlinear 
stochastic dynamic control systems in 
the presence of Brownian motion 
have been discussed and its 
controllability and hence 
stablizability are also been proved 
depending on the presented theorems.  

3. The relation between inverse 
optimality and optimality as well as 
robust control is discussed supported 
by some theoretical results. 

4. On depending on this work, 
the computational algorithm is easier 
and hence makes this work applicable 
and can be used to design some real 
life systems later on. 

5. The given example are added 
to the research to be easy to follow 
the direction of theorems and how it 
can be applied to more complex 
dynamic systems in future. 

6. We have been faced by a large 
of difficulties to follow this direction, 
like backstepping of stochastic 
dynamic systems, inverse optimality, 
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control Lyapunov functions, 
stochastic nonlinear output-feedback 
systems, stochastic stabilization, etc. 
So we recommend that any person 
who is interested in this direction 
should be familiar with these facts. 
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