# Novel Model Design of Compact Dual Notch-Bands of Attenuation for Bandpass Filters

Dr.Jamal. M. Rasool<sup>\*</sup> Saad H. Abdul Razzaq<sup>\*</sup> Received on: 29/12/2010 Accepted on: 20/6/2011

# Abstract

In this paper, a new microstrip model design of bandpass filter is proposed. Open stubs are applied to the band pass filter to refine the skirt selectivity on both sides of the upper and lower frequency band. Two attenuation poles are produced by this new structure. The upper band pole is introduced by the hairpin-comb structure. The lower band pole is introduced by the tapped open stubs. We fabricated a new structure using milling machine at the Lab in University of North Texas (UNT). Two attenuation poles are realized at the upper band and the lower band respectively, one at 1.71GHz and one at 1.93GHz. Sharp roll-off on both sides of the pass band is obtained. Measured results show good selectivity at both upper and lower bands

Keywords: bandpass filter, dual notch-band, resonator.

# التصميم الجديد لمرشح الإمرار المدمج ذو مجالي التوهين المتشعب

الخلاصة

في هذا البحث جرى عرض التصميم الجديد لمرشح الإمرار. تمت اضافة الصفائح ذات الحدود المفتوحه الى مرشح الامرار وذلك لتحسين الانتقائية في المجالات الترددية الأعلى والاوطأ. ان إضافة الصفيحتين إلى الشكل يؤدي إلى ظهور قطبين للتوهين . في النطاق العالي امكن الحصول على قطب التوهين بواسطة التركيب هايبرن- كومب اما في النطاق الاسفل فتم الحصول على قطب التوهين بواسطة التركيب هايبرن- كومب اما في النطوذ في مختبرات جامعة شمال تكساس وامكن الحصول على قطب التوالي راحد المفتوحه . تمت صناعة الترددي الاعلى والاوطأ على التوالي , احدهم عند التردد 1.71 كيكاهيرتز والاخر عند التردد 1.93 كيكاهيرتز , وتم الحصول على قطع حاد على جانبي نطاق الامرار . نتائج الترد الاعلى الاهران القائية جيدة عند التردية الاعلى و الاوطاً.

#### \*Electrical & Electronic Engineering Department, University of Technology/Baghdad 1955

https://doi.org/10.30684/etj.29.10.7

2412-0758/University of Technology-Iraq, Baghdad, Iraq This is an open access article under the CC BY 4.0 license <u>http://creativecommons.org/licenses/by/4.0</u>

# 1. Introduction

ecently.as a result of rapid progress in wireless communication systems, dual band bandpass filters (BPF) have become more and more attractive as one of the most important circuit blocks in exploring advanced dual wireless systems[1]. band The hairpin-line resonator has been widely used narrowband in the bandpass filters due to its easv implementation in high-order filter design[2]. However, it suffers from poor skirt selectivity near the passband, which is undesirable in modern communication systems. To overcome this disadvantage. а hairpin-comb structure was additional proposed to provide attenuation poles by simply rearranging the orientations of the hairpin resonators[3]. Tapped open stubs are also used as an alternative way to introducing attenuation poles near passband to improve the skirt selectivity in hairpin resonators[4]. The tapped open stub structure, however, is asymmetric and not suitable for conventional filter design. In this paper, we propose to combine the hairpin-comb structure and tapped open stub structure to realize a symmetric bandpass filter with two attenuation poles for improved skirt selectivity. The lower and upper attenuation poles are produced by the open slot between the hairpins and the open stubs tapped at the center of the hairpin resonator, respectively. An experimental prototype of proposed bandpass filter was designed at the

center frequency of 1.8 GHz and fabricated using milling machine at the Lab in the University of North Texas (UNT) on low-cost FR4 print circuit boards (PCB). Measured results show good selectivity at both upper and lower bands as predicted.

### 2. Structure And Characteristic Of Proposed Bandpass Filter

As has been mentioned, the hairpincomb structure can be used to introduce one attenuation pole at upper band. The structure of a typical hairpin-comb filter is shown 1(a). The slot mode in Fig. propagating between the two coupled lines (with length  $L_1$  and gap  $S_2$ ) performs like a series stub. This series stub acts as a bandstop filter and produces the attenuation pole. Thus, the position of this pole depends on the length of the slot. Since the coupling length  $(L_1)$  is always less than  $\lambda/4$ , the attenuation pole introduced by the coupling slot is always located at the upper stop band. For the lower band pole, tapped open stub can be used because of its flexible length. The additional stub is tapped at the center of the hairpin resonator and produces a notch frequency to the filter. Besides, it performs as a Kinverter and transforms the  $\lambda/2$ resonator into two  $\lambda/4$  resonators as shown in Fig. 1(b). Combining the hairpin-comb and tapped open stub, the topology of the proposed filter is given in Fig. 2. Two tapped open stubs with the same length and a coupled slot are used to introduce the desired attenuation poles at the upper and the lower bands of a bandpass filter [5]. Compared with

### Eng. & Tech. Journal, Vol. 29, No.10, 2011

the filter using hairpin-comb lines shown in Fig. 1(a), one additional attenuation pole is realized in the new design, which improves the band selectivity [6-8]. As for the filter only using tapped stubs, two separate attenuation poles can also be introduced by using different lengths for the two stubs [9]. We fabricated a new structure using milling machine at the Lab in the University of North Texas (UNT). However, the difference in stub lengths makes the topology asymmetric. Asymmetric structures are not accommodated in conventional filter designs where symmetrical coupling coefficients are used . Our proposed structure maintains the structure symmetry, delivering attenuation while two poles.

# 3. Results

In our proposed filter structure, the coupling slot should produce an attenuation pole at the upper band. However, a discrepancy has been observed in [2], where the pole always appears at the lower band even though the length of the slot is shorter than  $\lambda/4$  [7]. To confirm the effects of the coupled slot, a hairpincomb type filter is designed . This designed filter is at center frequency1.8GHz and fabricated on low-cost FR4 PCB board (dielectric constant=4.5.substrate

hickness=1.6mm, loss tangent = 0.02). As shown in Fig. 1(a), the dimensions of the filter are:  $L_1 = 20mm$ ,  $L_2 = 3mm$ ,  $S_1 = 0.4mm$ ,  $S_2=0.2mm$ ,  $W_1=3mm$ . Measured results are plotted in Fig. 3. An upper band attenuation pole at 1.93GHz is observed. As shown in

Novel Model Design of Compact Dual Notch-Bands of Attenuation for Bandpass Filters

Fig. 2, two additional tapped open stubs are added to the hairpin-comb filter and fabricated on the same FR4 board. The final dimensions of the new filter are:  $L_3=20$ mm,  $L_4=3mm$ , L<sub>5</sub>=27mm,  $S_3 = 0.4 \text{mm},$  $W_3 = 0.4 \text{mm}.$  $S_4 = 0.2 \text{mm}$ ,  $W_2=3mm$ , The length of the stubs is larger than that of the basic resonator to implement the lower band pole . Measured results are given in Fig. 4. The center frequency is 1.8 GHz the insertion loss in the and about 5.2dB. passband is As expected, two attenuation poles are realized at the upper band and the respectively, lower band one at 1.71GHz and one at 1.93GHz. Sharp roll-off on both sides of the passband is obtained. The measured insertion loss is high because of two reasons - 1) the low-cost FR4 board is used in the tested filters, which degrades the insertion loss due to its high loss tangent; 2) additional loss can be introduced by the fabrication error and the SMA connectors used in our measurement. Therefore, if the insertion loss is а design concern, we can apply a low-loss printed circuit board such as RT / duroid 6010 from Rogers Corporation, and

high performance SMA connectors in the proposed filter. In this way, the insertion loss can be reduced greatly.

# 4. Conclusions

symmetric bandpass filter Α combining tapped open stubs and hairpin-comb structure is proposed selectivity of the to improve the hairpin bandpass conventional filter. An experimental prototype of proposed bandpass filter was

Novel Model Design of Compact Dual Notch-Bands of Attenuation for Bandpass Filters

designed at the center frequency 1.8 fabricated on low-cost GHz and FR4 print circuit boards (PCB).Sharp skirt selectivity around the passband has been obtained in the new filter. Two attenuation poles are realized at the upper band and the lower band respectively, one at 1.71GHz and another one at 1.93GHz. Our proposed structure maintains the structure symmetry, while two attenuation delivering poles. Owing to its symmetric structure, the proposed filter can be easily implemented to the conventional high-order filter designs. Measured results show good selectivity at both upperand lower bands References [1] Zhou, M., Tang, Xi, and Xiao, Fe, " Compact Dual Band Bandpass Filter Using Novel E-Type Resonators With Controllable Bandwidths". IEEE Microwave and wireless Components Letters. Vol.18. N 12, Dec 2008 [2]. Cristal, E. G., and S. Frankel, "Hairpin-line and hybrid hairpinline/halfwave parallel-coupledfilters", IEEE Trans. Microw. line Theory Tech., 1972, N. 20, [3] Matthael, G. L., N. O. Fenzi. Forse, and S. M. Rohlfing, R. J. "Hairpincomb filters for HTS and other narrow-band applications," IEEE

N. 45, (8), pp. 1226-1231 [4] Lee, J. -R. , J. -H. Cho, , and S. –W. Yun, ,"New compact bandpass filter

Trans. Microw. Theory Tech., 1997,

open stub inverter", IEEE Microwave and Guided Wave Lett., 2000, 10, pp. 526-527 [5] Matthael, G. L., L. Young, and E. M. Jones, "Microwave filters. impedance matching networks, and coupling structures" (Artech House, Norwell. MA, 1980)

using microstrip  $\lambda/4$  resonators with

[6] Wang, H., and Q. -X. Chu, "A narrow-band Hairpin-Comb two pole filter with source- load coupling", *IEEE Microwave and Wireless Letters*,

Vol.20, 372-374, July 2010.

- [7] Kundu, A. C., and K. Endou, "Control of attenuation pole frequencies and miniaturization of a two-pole  $\lambda/4$ TEM-Mode planar dielectric waveguide bandpass filter" *IEEE European Microwave Conference*,2001
- [8]8. Jung, K. R., and J. H. Kang,
  "Enhanced performance of HTS Hairpin type bandpass filter by interdigitated inner poles" *IEEE7 Transactions on Applied Superconductivity*, Vol.13, 291-293, June 2003
- [9] Hong, J. -S., and M. J. Lancaster, "Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies" IEEE Transactions on Microwave Theory and Techniques, Vol. 48, NO.7, 1098-1107, 2000.

Novel Model Design of Compact Dual Notch-Bands of Attenuation for Bandpass Filters



Figure (1) Structures that can be used to improve the skirt selectivity in hairpin bandpass filters(a) the hairpin-comb bandpass filter (b) the tapped open stub

Novel Model Design of Compact Dual Notch-Bands of Attenuation for Bandpass Filters



Figure (2)Topology of the proposed bandpass filter



Figure (3) Measured S-parameters( frequency response) of a hairpin-comb bandpass filter



Figure (4) frequency response of the proposed bandpass filter