Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

Fadhil A. Hassan*& Lina J. Rashad*

Received on: 29/11/2010 Accepted on: 3/11/2011

Abstract

Proportional Integral Derivative (PID) controllers are widely used in many fields because they are simple and effective. Tuning of the PID controller parameters is not easy and does not give the optimal required response, especially with non-liner system. In the last two decades many intelligent optimization techniques were took attention of researchers like: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) techniques. This paper represented the non-linear mathematical model and simulation of the synchronous generator with closed loop PID controller of AVR system. The traditional PID tuning technique is proposed as a point of comparison. Two of intelligent optimization techniques: PSO and GA are proposed in this paper to tune the PID controller parameters. The obtained results of the closed loop PSO-PID and GA-PID controller response to the unit step input signal shows excellent performance with respect to the traditional trial and error tuning of the PID controller.

Keywords: PID Controller, Particle Swarm Optimization, Genetic Algorithm, Synchronous Generator AVR.

أمثلية الحشد الجزيئي والخوارزمية الجينية لتوليف المسيطر التناسبي التكاملي التفاضلي للسيطرة على نظام منظم الجهد الأوتوماتيكي للمولد المتزامن

الخلاصة

المسيطر النتاسبي التكاملي النقاضلي واسع الأستخدام في عدة مجالات وذلك لبساطنه وكفائته ولكن عملية توليف معاملات المسيطر ليست بسيطه ولاتعطي الأستجابه المثلى وخصوصا مع الأنظمة اللاخطية في العقدين الأخيرين عدد من التقنيات الذكيه جلبت أهتمام الباحثين للحصول على الأستجابة المثلى، ومن هذه التقنيات: نظام الخوارزمية الجينية و أمثلية الحشد الجزيئي والتي أصبحت ادوات قويه للحصول على الأستجابة المثلى يقدم هذا البحث النموذج الرياضي اللاخطي للمولد المتزامن مع مسيطر الحلقة المخلقة التقديات: نظام الخوارزمية البحث النموذج الرياضي اللاخطي للمولد المتزامن مع مسيطر الحلقة المخلقة الأستجابة المثلى يقدم هذا البحث النموذج الرياضي اللاخطي للمولد المتزامن مع مسيطر الحلقة المخلقة التتاسبي التكاملي التفاضلي على نظام منظم الجهد الأوتوماتيكي تم توليف المسيطر باستخدام الطريقة التقليدية لأستخدامها في مقارنة النتائج يقترح هذا البحث أستخدام تقنيتين ذكيتين لتوليف المسيطر التاسبي التكاملي التفاضلي وهما الخوارزمية الجينية وأمثلية الحشد الجزيئي أعطت النتاب بي المتحاملي المتاصلي وهما الخوارزمية الجينية وأمثلية الحشد المينو المتاب النتائج المستحصل عليها

1. Introduction

he PID controller is considered as the workhorse of the industrial control process, because of its highfeatures like: simpleoperation algorithm, relative easy adjusted, and it has reliably produced excellent control performance. Therefore, it has been familiar with researchers and practitioners within control community. In spite of its widespread use, one of its main disadvantages is that there is no

*Electrical Engineering Department, University of Technology/Baghdad

https://doi.org/10.30684/etj.29.16.1

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

^{2412-0758/}University of Technology-Iraq, Baghdad, Iraq

efficient tuning method for this type of controller [1]. Several tuning methods have been proposed for the tuning of process popular control loop. The most Zieglertuning methods are: Nichols, Cohen-Coon, Astraand Hagglund. Unfortunately, in spite of this large range of tuning techniques, optimum the performance cannot be achieved [1].

Several new intelligent optimization techniques have been emerged in the past two decades like: Genetic Algorithm (GA), Particle Swarm Optimization (PSO). Optimization Ant Colony (ACO), Simulated Annealing (SA), and Bacterial Foraging (BF) [2]. Due to its high potential for global GA optimization, has received great attention in control system such as the search of optimal PID controller parameters. The natural genetic operations would still result in enormous computational efforts. PSO is one of the modernHeuristics algorithms, was developed it through simulation of a simplified social system, and has been found to be robust in solving continuous non-linear optimization problems [2].

In this tradition paper, а method for tuning PID controller of synchronous non-linear generator AVR system control is represented. Then, the GA and PSO based methods for tuning the PID controller parameters are proposed modern intelligent as а optimization algorithm.

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

2. Modeling and Simulation of Synchronous Machine

Figure (1)shows the synchronous generator stator and rotor windings in the da-axis model; it's obviously that the effect of the field winding appears only in the d-axis, whereas the effect of the damper winding is equivalent to the rotor cage winding of an induction motor, which appears in both dqaxis circuits [3]. The mathematical description of the synchronous machine has two main problems: first, is the complex 3-phase represented differential equations, and second, is the time varying mutual inductance between stator and rotor winding through dynamic response of the SG [4]. Simply, the first problem can be solved by using axis transformation to transfer the 3-phase parameters and quantities (like: voltage, current, flux....) to 2-phase parameters, which called Park's transformation or, Park model of SG. In which all stator quantities are transferred from phase a, b and c into equivalent dq axis new variables. 4) Equations (1 to show the approximate Park's transformation by neglecting the zero sequence parameters: [3, 4] $\hat{D}(A)$

$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{2}} \left[\cos\left(\theta\right) & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) \\ \sin\left(\theta\right) & \sin\left(\theta - \frac{2\pi}{3}\right) & \sin\left(\theta + \frac{2\pi}{3}\right) \\ \sin\left(\theta + \frac{2\pi}{3}\right) & \sin\left(\theta + \frac{2\pi}{3}\right) \\ \sin\left(\theta - \frac{2\pi}{3}\right) & \sin\left(\theta - \frac{2\pi}{3}\right) \\ \sin\left(\theta - \frac{2\pi}{3}\right) \\$$

$$\begin{bmatrix} V_q^s \\ V_d^s \end{bmatrix} = |P(\theta)| \cdot \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} \qquad \dots (2)$$
$$\begin{bmatrix} I_q^s \\ I_d^s \end{bmatrix} = |P(\theta)| \cdot \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} \qquad \dots (3)$$

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

$$\begin{bmatrix} \Psi_q^s \\ \Psi_d^s \end{bmatrix} = \\ |P(\theta)|. \begin{bmatrix} \Psi_a \\ \Psi_b \\ \Psi_c \end{bmatrix} \qquad \dots (4)$$

Where:

 θ : is the instantaneous phasor angle.

P: is the transformation matrix "eq. (1)".

 V_{a} , V_{b} , V_{c} : 3-phase supply voltages.

 i_a , i_b , i_c : 3-phase stator currents.

 Ψ_a, Ψ_b, Ψ_c : 3-phase air-gap flux.

 V_q^s, V_d^s : 2-phase supply voltages.

 I_a^s , I_d^s : 2-phase stator currents.

 Ψ_q^s , Ψ_d^s : 2-phase air-gap flux.

The time varying problem can be accomplished by using the synchronously rotating reference frame model, in which all stator variables associated with fictitious winding rotating with the rotor at The synchronous speed [4]. transformation equations are:

$$F(\theta_e) = \begin{bmatrix} \cos(\theta_e) & -\sin(\theta_e) \\ \sin(\theta_e) & \cos(\theta_e) \end{bmatrix} (5)$$
$$\begin{bmatrix} v_q^e \\ v_d^e \end{bmatrix} = |F(\theta_e)| \cdot \begin{bmatrix} v_q^s \\ v_d^s \end{bmatrix} (6)$$

Where:

The superscript notation "s" referred to the stationary frame quantities. and the superscript "e" notation referred to the synchronously rotating reference frame quantities.

Therefore, the synchronously rotating reference frame equivalent circuits of the SG in d^e - q^e axis can be shown in figure (2). Equations (7 to 18) show stator and rotor circuits equations in d^e - q^e axis:

■ stator equations:[3, 4]

$$V_{qs}^{e} = -I_{qs}R_{s} - \omega_{e}\Psi_{ds} - \frac{d\Psi_{qs}}{dt}...(7)$$

 $V_{ds}^{e} = -I_{ds}R_{s} + \omega_{e}\Psi_{qs} - \frac{d\Psi_{ds}}{dt}...(8)$

■rotor equations:[3, 4]

$$\mathbf{0} = I_{qr}R_r - \frac{d\Psi_{qr}}{dt} \qquad \dots (9)$$

$$\mathbf{0} = I_{dr}R_r - \frac{d\Psi_{dr}}{dt} \qquad \dots (10)$$

$$V_f = I_f R_f + \frac{\alpha r_f}{dt} \qquad \dots (11)$$

Where:

 V_{qs}^e, V_{ds}^e : are the d^e-q^e axis stator voltages.

 I_{qs}, I_{ds} : are the d^e-q^e axis stator currents.

 Ψ_{qs}, Ψ_{ds} : are the d^e-q^e axis stator fluxes.

 R_s : is the stator resistance.

 I_{qr} , I_{dr} : are the rotor currents.

 Ψ_{qr}, Ψ_{dr} : are the rotor fluxes.

 R_r : is the rotor resistance.

 V_f : is the excitation voltage.

 I_f : is the excitation current.

 R_f : is the excitation resistance.

 Ψ_f : is the excitation flux.

Where all rotor parameters are referred to stator circuit and the mutual and self inductance of air gap (main) flux linkage are identical to L_{qm} and L_{dm} rotor to stator reduction.

$$\begin{split} \Psi_{qs} &= L_{ls}I_{qs} + L_{qm}(I_{qs} \\ &+ I_{qr}) \quad \dots \dots (12) \\ \Psi_{ds} &= L_{ls}I_{ds} + L_{dm}(I_{ds} + I_{dr} + I_{f}) \\ \Psi_{f} &= L_{lf}I_{f} + L_{dm}(I_{ds} + I_{dr} + I_{f}) \\ \Psi_{qr} &= L_{lr}I_{qr} + L_{qm}(I_{qs} \\ &+ I_{qr}) \\ \Psi_{dr} &= L_{lr}I_{dr} + L_{dm}(I_{ds} + I_{dr} + I_{f}) \\ \Psi_{dr} &= L_{lr}I_{dr} + L_{dm}(I_{ds} + I_{dr} + I_{f}) \\ \end{pmatrix}$$

The electromagnetic torque:[3, 4] $T_e = -\frac{3}{2}P_1(\Psi_{ds}I_{qs} - \Psi_{as}I_{ds}) \dots (17)$

■*The motion equation*:

 $T_{shaft} - T_e$ = $\frac{J}{P_1} \frac{d\omega_r}{dt}$ (18)

By using equations (7 to 18) in p.u. form, with ignoring the effect of the damper winding (for simplicity), the per-phase dynamic reference frame model of а synchronous generator be can simulated as shown in figure (3). This simulation consists of dq-axis stator and rotor dynamic model in which the output stator voltage v_{as}^e, v_{ds}^e are obtained from the voltage drop across the load resistance (r_L):

$$v_{qs}^{e} = i_{qs}r_{L}$$
 (19)
 $v_{ds}^{e} = i_{ds}r_{L}$ (20)

The open loop output voltage of the S.G. performance without feedback, controller and AVR under no-load and full-load operating per-unit conditions in values is illustrated in figure (4).

3. Traditional Tuning of The PID Controller

The PID controller calculations involve three separate parameters: Proportional, Integral, and Derivative gains $(K_P, K_I \text{ and }$ K_D respectively). The proportional gain determines the reaction of the current error, integral gain the determines the reaction based on of error. the sum recent and derivative gain determines the

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

reaction based on the rate at which the error has been changing. Equation (21) shows the weighted sum of three actions is used to adjust the process via the final control element [5]:

$$y(t) = K_P e(t) + K_D \frac{d e(t)}{dt} + K_I \int_0^t e(t) dt$$
.....(21)

Linear control systems can he easily tuned using classical tuning techniques such as Ziegler-Nichols and Cohen-Coon tuning formula. Empirical studies have found that these conventional tuning techniques result in an unsatisfactory control performance with non-linear systems. It is for reason that control this practitioners and researchers often prefer to tune most non-linear systems using trial and error method [1].

The goal of PID controller tuning process is to determine parameters that meet closed loop performance specifications, and the robust performance of the control loop over a wide range of operation conditions should also be ensured.

Practically, it is often difficult to achieve all of these desirable qualities. For example, if the PID controller is adjusted to provide better transient response to set point change, it usually results in a response sluggish under disturbance condition. On the other hand, if the control system is made robust to disturbance by choosing conservative values for the PID controller, it may result in a slow closed loop response to a set point change [1, 6]. The name plate of the used generator is illustrated in table (1).

The overall system simulation is shown in figure (5). By using trial and error method, the best result can be obtained of the PID controller parameters, to achieve a suitable output voltage performance of the non-linear synchronous generator AVR system are:

 K_{P} = 0.5, K_{I} = 5, and K_{D} = 0.1. Which give a transient system response to the unit step input:

- Rise time= 0.6 sec.
- Maximum overshot= 21%.
- Settling time= 3.6 sec.
- Steady state error= 0%.

The output performance of the system under no-load and full-load conditions in per-unit values can be shown in figure (6).

4.1 Genetic Algorithm Optimization

Artificial intelligent techniques have come to be the most widely used tool for solving many optimization problems. Genetic Algorithm (GA) is a relatively new approach of optimum searching, popular becoming increasing in science and engineering disciplines [7].

The basic principles of GA were first proposed by Holland, it is inspired by the mechanism of natural selection where stronger individuals would likely be the winners in a competing environment [8]. In this approach, variables are represented the as on chromosome. GAs genes а candidate features group а of solutions (population) the on response surface. Through natural selection and genetic operators, mutation and crossover, with fitness chromosomes better

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

are found. Natural selection guarantees the recombination operator, the GA combines genes from two parent chromosomes to form two chromosomes (children) that have a high probability of having better fitness that their parents [7, 9]. Mutation allows new area of the response surface to be explored.

In this paper, a GA process is used to find the optimum tuning of the PID controller, by forming random of population of 50 real precision numbers double chromosomes is created representing the solution space for the PID controller parameters $(K_{P},$ K_{I} and K_{D}), which represent the genes of chromosomes. The GA proceeds to find the optimal solution through several the mutation function generations, is the adaptive feasible, and the crossover function is the scattered.

4.2 Fitness Function

In PID controller design methods. the most common performance criteria are Integrated Absolute Error (IAE), the Integrated of Time weight Square Error (ITSE) and Integrated of Square Error (ISE) that can be evaluated analytically in frequency domain [2].

Each criterion has its own advantage and disadvantage. For example, disadvantage of IAE and ISE criteria is that its minimization result in a response with can relatively small overshot but a long settling time, because the ISE performance criteria weights all errors equally independent of time. Although, the ITSE performance criterion overcome can the

disadvantage of ISE criterion. The IAE, ISE, and ITSE performance criterion formulas are as follows: $IAE = \int_0^t |r(t) - y(t)| dt = \int_0^\infty |e(t)| dt$...(22) $ISE = \int_0^t e^2(t) dt$...(23) $ITSE = \int_0^t t * e^2(t) dt$...(24)

In this paper, the integrated of time weight square error ITSE is used for evaluating the PID controller. A set of good control parameters can yield a good step that will result response in performance minimization criteria in the time domain, this called performance criterion is Fitness Function (FF) which can be formulated as follows [2]: $FF = (1-e^{-b})(M_p+E_{ss})+e^{-b}(T_s-T_r)+ITSE$

Where:

 M_P is maximum overshot. E_{ss} is steady state error. T_s is the settling time. T_r is the rise time.

..... (25)

 β is the weighting factor can set to be larger than 0.7 to reduce the overshot and steady state error, also can be smaller than 0.7 to reduce the rise time and settling time.

The objective function of the optimization algorithm is to minimize the fitness function FF. the GA process was done by using MATLAB TOOLBOX and the flow chart of the program steps can figure be shown in (7). The obtained parameters from the GA process are;

 K_{P} = 1.5, K_{I} = 8.21, K_{D} = 1.02. Which give a transient system performance to the unit step input:

- Rise time= 0.33 sec.
- Maximum overshot= 11%.

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

- Settling time= 2.1 sec.
- Steady state error= 0%.

The output performance of the system under no-load and full-load conditions in per-unit values can be shown in figure (8).

5. Particle Swarm **Optimization** PSO is one of the optimization techniques first proposed by Eberhart and Colleagues [5, 6]. This method has been found to be robust in solving problems featuring and non-linearity nondifferentiability, which is derived social-psychological from the theory. The technique is derived from research on swarm such as fish schooling and bird flocking. In the PSO algorithm, instead of using evolutionary operators such as and mutation crossover to manipulate algorithms, the population dynamics simulates а "bird flocks" behavior, where social sharing of information takes place and individuals can profit from the discoveries and previous experience of all the other companions during the search for food. Thus, each companion, called particle, in the population, which is called swarm, is assumed to " fly " in many direction over the search space in order to meet the demand fitness function [2, 5, 6, 10].

For n-variables optimization problem a flock of particles are put into the n-dimensional search space randomly chosen velocities with and positions knowing their best values, so far (P_{best}) and the position in the n-dimensional space [5, 6]. The velocity of each particle, adjusted accordingly to its own flying experience and the other particles flying experience. For

example, the i_{th} particle is represented, as:,

$$x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,n}) \dots (26)$$

In n-dimensional space, the best previous position of the i_{th} particle is recorded as:

 $P_{best_i} =$

 $(P_{best_{i,1}}, P_{best_{i,2}}, \dots, P_{best_{i,n}})..(27)$

The modified velocity and position of each particle can be calculated using the current velocity and distance from $(P_{best_{id}})$ shown in the (g_{best_d}) as to following formula [2, 5, 6, 10]:

$$V_{l,m}^{(lt+1)} = W * V_{l,m}^{(lt)} + c1 * rand *$$

$$(P_{best_{l,m}} - x_{l,m}^{(lt)}) + c2 * rand *$$

$$(g_{best_{m}} - x_{l,m}^{(lt)}) \qquad \dots (28)$$

$$x_{l,m}^{(lt+1)} = x_{l,m}^{(lt)} + v_{l,m}^{(lt)} \qquad \dots (29)$$

$$i = l 2 \qquad n$$

$$m=1,2,...,d$$

Where:

n = Number of particles.

It. = Iterations pointer.

 $V_{i,m}^{(lt.)}$ = Velocity of particle no. *i* at iteration It.

W = Inertia weight factor.

 $c_{1,c_{2}} = Acceleration constant.$

rand = Random number between 0-1.

 $x_{i,m}^{(It.)}$ = Current position of particle *i* at iteration It.

 P_{best_i} = Best previous position of i_{th} particle.

 g_{best_m} = Best particle among all the particles in the population.

6. Implementing PSO Tuning for PID Controller

The implementation of particle swarm optimization in this

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

work is what same complex, performance because the of the system must be examined in each particles iteration and position during the optimization algorithm. optimization Therefore, the algorithm is implemented by using MATLAB m-file program and linked with the system simulation program in MATLAB SIMULING, to check the system performance in each iteration.

In this paper, the problem is to optimize three variables which are: K_P , K_I and K_D thus, the particles have three dimensions and particles 'fly' in three dimensional must spaces. A random of 100 particles positions assumed is and optimization algorithm 100 of iterations is used to estimate the optimal values of the PID The controller parameters. fitness function illustrated in equation (25) is used as a performance criterion.

The flow chart of the PSO algorithm program can be summarized in figure (9). The obtained parameters from the PSO tuning process of the PID controller are;

 K_{P} = 2.23, K_{I} = 11.96, K_{D} = 1.89. Which give a transient system performance to the unit step input:

- Rise time= 0.25 sec.
- Maximum overshot= 9%.
- Settling time= 1.8 sec.
- Steady state error= 0%.

And output performance of the system under no-load and fullload conditions can be shown in figure (10).

7. ConclusionS

The system responses of different tuning methods are

illustrated in table (2). And a comparison performance between the three proposed methods in this research (trial and error, GA, and PSO methods) is shown in figure (11). The conclusion of this work can be summarized as following:

• Obviously, the PSO tuning of the PID controller is the best intelligent method which gives an excellent system performance, and the GA gives a good response with respect to the traditional trial and error method.

• In addition to the improving of system response, the PSO and GA can use a high order system in the tuning process which avoids the error of system order reduction.

• The intelligent tuning methods represent a powerful solution of non-linear system control, which reduce the complex calculations.

Computationally optimization • (PSO and GA) is methods verv easy to implement and have high tolerance degree, and the computation process fast is very comparing with the conventional methods like **Ziegler-Nichols** or Cohen-Coon.

8. References

- [1] Nelendran Pillay,"A Particle Swarm Optimization Approach for Tuning of SISO PID Control Loop", MSc. Thesis, Durban University of Technology, 2008.
- [2] M. Nasri, H. Nezamabadi and Maghfoori, ''A **PSO-Based** M. **Optimum** Design of PID Controller for Linear Α Motor", Brushless DCWorld Academy of Science, Engineering and Technology, 2007.

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

- [3] Ion Boldea, "Synchronous Generators", Handbook, Taylor and Francis Group, 2006.
- [4] Bimal K. Bose, "Modern Power Electronic and AC Drives", Prentice Hall, 2002.
- N. [5] Β. Nagaraj And Murugananth "Soft Computing-Based Optimum Design of PID Controller For A Position DCControl Motor". of Mediamira Science Publisher, Volume 51, Number 1, 2010.
- [6] B. Allaoua, B. Gasbaoui, And B. Merbarki "Setting Up PID DCMotor Speed Control Alteration Parameters Using Particle Swarm **Optimization** Strategy", Leonardo Electronic of Practices And Journal Technologies, Issue 14, P 19-32, 2009.
- [7] F. Martinez and M. Gastiblanco, "Increase the Boost Converter Performance Using Genetic Algorithms", Online Journal on Electronics and Electrical Engineering, Vol. 2. No. 1. 2008.
- [8] В. Allaoua, A. Laaoufi, "Intelligent Controller Design for DC Motor Speed Control Based on Fuzzy Logic-Genetic Algorithms Optimization", Leonardo Journal of Sience, Issue 13, P. 90-102, 2008.
- [9] C. Benachaiba, \mathbf{O} Abdel Khalek, and S. Dib,"Optimization of **Parameters** Unified of the Power Quality Conditioner Using Genetic Algorithm Method", Information

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

Technology and Control, ISSN 1392, Vol. 36, No. 2, 2007.

[10] S.M.GirirajKumar, Deepak Jayaraj and Anoop.R.Kishan, "PSO Based Tuning of a PID Controller for a High

Performance		1	Drilling
Machine",		Intern	national
Journal	of	Co	mputer
Applications	(0975	-	8887),
Volume 1, No.	. 19, 20	10.	

Table (1) Generator	namepiate	
Power	5 KVA	
Voltage	380 V L-L	
Frequency	50 Hz	
Stator Resistance	1.2 Ω	
Field Resistance	50 Ω	
Excitation Voltage	110 V	
Stator Inductance	13.6 mH	
Field Inductance	33.4 mH	
Rotor Inertia	0.1 kg/m ²	

Table (1) Generator namepla	hto.

Table (2) System Responses of Variable Tuning Methods

	Conven. Tuning	GA-PID Tuning	PSO- PID Tuning
M _P (%)	21	11	9
T _r (sec)	0.6	0.33	0.25
T _s (sec)	3.6	2.1	1.8
E _{ss} (%)	0	0	0

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

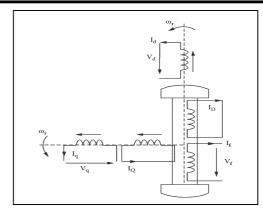


Figure (1) S.G. Windings in dq-axis

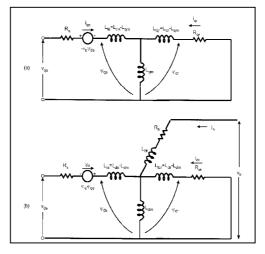


Figure (2) Stator and Rotor Equivalent Circuits in dq-axis.

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

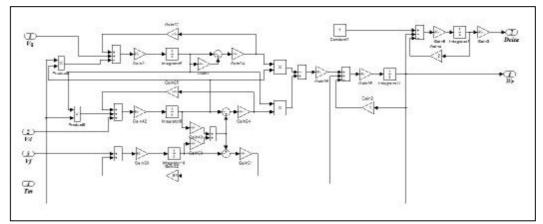


Figure (3) S.G. Simulation.

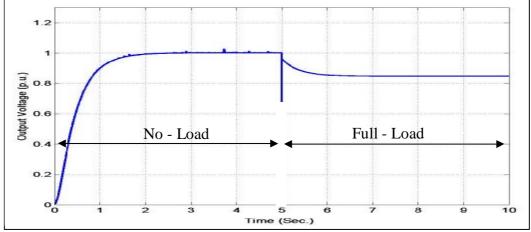


Figure (4) Open Loop Performance.

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

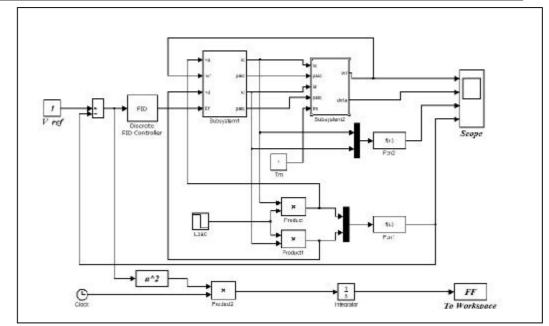


Figure (5) PID Controller of the S.G.

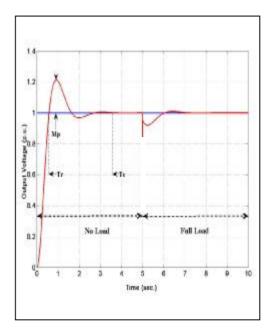


Figure (6) System Performance of Conventional PID Tuning Method.

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

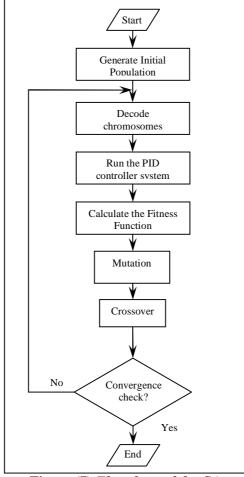


Figure (7) Flowchart of the GA.

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

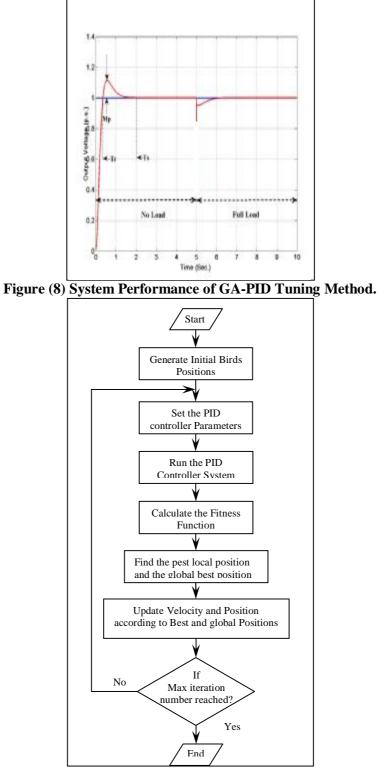
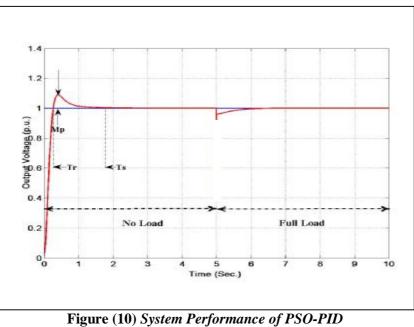



Figure (9) Flowchart of the PSO.

Particle Swarm Optimization and Genetic Algorithm for Tuning PID Controller of Synchronous Generator AVR System

Tuning Method.

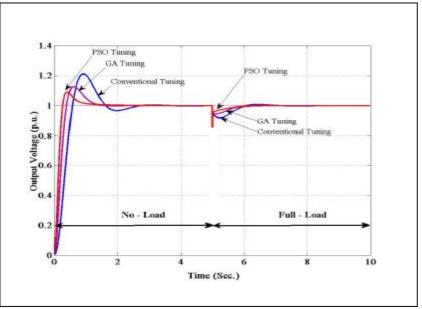


Figure (11) Comparison Performance of Different Proposed Tuning Methods.