On Projective 3-Space

Mohammed S.Kirdar* \& Amal S.Al-Mukhtar*

Received on: 29 / 6 /2008
Accepted on: 6/11/2008

Abstract

The purpose of this work is to give some definitions and prove some theorems on projective 3 -space $\mathrm{S}=\mathrm{PG}(3, \mathrm{~K})$ over a field K .

Also, the principle of duality in S is given which state that any theorem true in the projective 3 -space concerned with the points, planes and the incidence relation, the same theorem is true by interchanging "point" and "plane" whenever they occur, where as the dual of a line is a line.

Keyword : point, plane, duality.

Introduction

A projective 3-space $\mathrm{PG}(3, \mathrm{~K})$ over a field K is a 3 -dimensional projective space which consists of points, lines and planes with the incidence relation between them, [1].

The projective 3 -space satisfies the following axioms:
A. Any two distinct points are contained in a unique line.
B. Any three distinct non-collinear points, also any line and a point not on the line are contained in a unique plane.
C. Any two distinct coplanar lines intersect in a unique point.
D. Any line not on a given plane intersects the plane in a unique point.
E. Any two distinct planes intersect in a unique line.

Principle of duality, [2] any properly worded valid statement in a projective 3 -space concerning incidence of points and planes gives rise to a second statement obtained from the first by interchanging the words "point" and "plane".

Thus the dual elements are the point and the plane with the word "line" left unchanged.

Any point in $\mathrm{PG}(3, \mathrm{~K})$ has the form of a quadrable ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$), where $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$, x_{4} are elements in K with the exception of the quadrable consisting of four zero elements.

Two quadrables ($\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$) and $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ represent the same point if there exists λ in $K \backslash\{0\}$ such that $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\lambda\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}\right)$.

Similarly, any plane in $\operatorname{PG}(3, K)$ has the form of a quadrable $\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right]$, where $x_{1}, x_{2}, x_{3}, x_{4}$ are elements in K with the exception of the quadrable consisting of four zero elements.

Two quadrables $\left[\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right]$ and $\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$ represent the same plane if there exists λ in $K \backslash\{0\}$ such that $\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right]=\lambda\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}\right]$.

Also a point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)$ is incident with the plane $\pi\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ iff
$a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=0 .[3]$
Now, some theorems on projective 3-space $\operatorname{PG}(3, \mathrm{k})$ can be proved.

[^0]
Theorem 1:

Four distinct points $\mathrm{A}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, $\mathrm{B}\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \mathrm{C}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$, and $\mathrm{D}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ are coplanar iff
$\Delta=\left|\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{1} & z_{2} & z_{3} & z_{4} \\ w_{1} & w_{2} & w_{3} & w_{4}\end{array}\right|=0$.

Proof

Let $\pi \quad\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$ be a plane containing the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, then
$x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}+x_{4} u_{4}=0$
$y_{1} u_{1}+y_{2} u_{2}+y_{3} u_{3}+y_{4} u_{4}=0$
$z_{1} u_{1}+z_{2} u_{2}+z_{3} u_{3}+z_{4} u_{4}=0$
$w_{1} u_{1}+w_{2} u_{2}+w_{3} u_{3}+w_{4} u_{4}=0$
It is known from the linear algebra that this system of equations have non zero solutions for $u_{1}, u_{2}, u_{3}, u_{4}$ iff $\Delta=0$. Thus the necessary and sufficient conditions for four points to be coplanar that $\Delta=0$.

Corollary

If four distinct points $\mathrm{A}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, $\mathrm{B}\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \mathrm{C}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$, and $\mathrm{D}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ are collinear, then $\Delta=0$.

This follows from theorem (1) and the incidence of these points on a line of some plane.

From the principle of duality, one can prove:

Theorem 2

Four distinct planes $\mathrm{A}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, $\mathrm{B}\left[y_{1}, y_{2}, y_{3}, y_{4}\right], \mathrm{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$, and $\mathrm{D}\left[w_{1}\right.$, $\left.w_{2}, w_{3}, w_{4}\right]$ are concurrent (intersecting in one point) iff
$\Delta=\left|\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{1} & z_{2} & z_{3} & z_{4} \\ w_{1} & w_{2} & w_{3} & w_{4}\end{array}\right|=0$

Theorem 3

The equation of the plane determined by three distinct points $\mathrm{A}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$, $\mathrm{B}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$, and $\mathrm{C}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ is

$$
\left|\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4} \\
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right|=
$$

$\left|\begin{array}{lll}y_{2} & y_{3} & y_{4} \\ z_{2} & z_{3} & z_{4} \\ w_{2} & w_{3} & w_{4}\end{array}\right| x_{1}+\left|\begin{array}{ccc}y_{3} & y_{1} & y_{4} \\ z_{3} & z_{1} & z_{4} \\ w_{3} & w_{1} & w_{4}\end{array}\right| x_{2}+$
$\left|\begin{array}{ccc}y_{1} & y_{2} & y_{4} \\ z_{1} & z_{2} & z_{4} \\ w_{1} & w_{2} & w_{4}\end{array}\right| x_{3}+\left|\begin{array}{ccc}y_{3} & y_{2} & y_{1} \\ z_{3} & z_{2} & z_{1} \\ w_{3} & w_{2} & w_{1}\end{array}\right| x_{4}=0$
where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be any variable point on the plane, and it's coordinates
are:

$$
\left[\left|\begin{array}{ccc}
y_{2} & y_{3} & y_{4} \\
z_{2} & z_{3} & z_{4} \\
w_{2} & w_{3} & w_{4}
\end{array}\right|,\left|\begin{array}{ccc}
y_{3} & y_{1} & y_{4} \\
z_{3} & z_{1} & z_{4} \\
w_{3} & w_{1} & w_{4}
\end{array}\right|\right.
$$

$$
\left.\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{4} \\
z_{1} & z_{2} & z_{4} \\
w_{1} & w_{2} & w_{4}
\end{array}\right|,\left|\begin{array}{ccc}
y_{3} & y_{2} & y_{1} \\
z_{3} & z_{2} & z_{1} \\
w_{3} & w_{2} & w_{1}
\end{array}\right|\right]
$$

Theorem 4

The equation of the point determined by three distinct planes (non-collinear) $a\left[y_{1}, y_{2}, y_{3}, y_{4}\right], b\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$, and $c\left[w_{1}, w_{2}, w_{3}, w_{4}\right]$ is

$$
\left|\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4} \\
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right|=
$$

$\left|\begin{array}{lll}y_{2} & y_{3} & y_{4} \\ z_{2} & z_{3} & z_{4} \\ w_{2} & w_{3} & w_{4}\end{array}\right| x_{1}+\left|\begin{array}{ccc}y_{3} & y_{1} & y_{4} \\ z_{3} & z_{1} & z_{4} \\ w_{3} & w_{1} & w_{4}\end{array}\right| x_{2}+$
$\left|\begin{array}{lll}y_{1} & y_{2} & y_{4} \\ z_{1} & z_{2} & z_{4} \\ w_{1} & w_{2} & w_{4}\end{array}\right| x_{3}+\left|\begin{array}{ccc}y_{3} & y_{2} & y_{1} \\ z_{3} & z_{2} & z_{1} \\ w_{3} & w_{2} & w_{1}\end{array}\right| x_{4}=0$
where $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ be any variable plane passing through the point, and it's coordinates are:

$$
\left(\left|\begin{array}{ccc}
y_{2} & y_{3} & y_{4} \\
z_{2} & z_{3} & z_{4} \\
w_{2} & w_{3} & w_{4}
\end{array}\right|,\left|\begin{array}{ccc}
y_{3} & y_{1} & y_{4} \\
z_{3} & z_{1} & z_{4} \\
w_{3} & w_{1} & w_{4}
\end{array}\right|\right.
$$

$$
\left.\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{4} \\
z_{1} & z_{2} & z_{4} \\
w_{1} & w_{2} & w_{4}
\end{array}\right|,\left|\begin{array}{ccc}
y_{3} & y_{2} & y_{1} \\
z_{3} & z_{2} & z_{1} \\
w_{3} & w_{2} & w_{1}
\end{array}\right|\right)
$$

Notation

If v is the vector with components $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, then the symbol $\mathrm{P}(v)$ means that the coordinates of the point P are $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ in a projective 3 -space $\mathrm{S}=\mathrm{PG}(3, \mathrm{~K})$.

Definition 1:[3]

The points $\mathrm{P}_{i}\left(v_{i}\right)$, with $i=1, \ldots, m$ are linearly dependent or independent according as the vectors v_{i} are linearly dependent or independent.

Definition 2:[3]

If the points $P_{1}, P_{2}, \ldots, P_{m}$ are linearly dependent, then at least one of the c_{i} 's of the equation $\sum_{i=1}^{m} c_{i} \mathrm{P}_{i}\left(v_{i}\right)=0$ is not equal to zero, say c_{1}, then $\mathrm{P}_{1}=\frac{-1}{c_{1}}\left(c_{2} \mathrm{P}_{2}+c_{3} \mathrm{P}_{3}+\cdots+c_{m} \mathrm{P}_{m}\right)$. The point P_{1} is then said to be a linear combination of the points $\mathrm{P}_{2}, \mathrm{P}_{3}, \ldots, \mathrm{P}_{m}$.

This definition may be dualized by replacing the word "point" by the word "plane", and the geometric meaning of
linear dependence of points or planes may now be given.

Theorem 5

Two points (planes) are linearly dependent iff they coincide.

Proof

Let P and Q be any two points. If P and Q are linearly dependent, then there exist c_{1} and c_{2} such that $\left(c_{1}, c_{2}\right) \neq(0,0)$, $c_{1} \mathrm{P}+c_{2} \mathrm{Q}=\theta$.
If $c_{1}=0$, then $c_{2} \mathrm{Q}=\theta$.
This implies $c_{2}=0$, since $\mathrm{Q} \neq(0,0,0)$. Then $c_{1} \neq 0$ and similarly $c_{2} \neq 0$, $\mathrm{P}=\frac{-\mathrm{c}_{2}}{\mathrm{c}_{1}} \mathrm{Q}$.

This means that P and Q coincide. If P and Q are coincide, then there exist $c_{1} \neq$ $0, c_{2} \neq 0$ s.t. $c_{1} \mathrm{P}=c_{2} \mathrm{Q}$.

Hence, $c_{1} \mathrm{P}-c_{2} \mathrm{Q}=\theta$ and thus P and Q are linearly dependent.

Theorem 6

Four points are linearly dependent iff they are coplanar.

Proof

Let $\mathrm{A}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \mathrm{B}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$, $\mathrm{C}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$, and $\mathrm{D}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ be any four points in S. If A, B, C, D are linearly dependent, then there exist c_{1}, c_{2}, c_{3} and c_{4} in K such that $\left(c_{1}, c_{2}, c_{3}, c_{4}\right) \neq$ $(0,0,0,0)$ and $c_{1} \mathrm{~A}+c_{2} \mathrm{~B}+c_{3} \mathrm{C}+c_{4} \mathrm{D}=\theta$ $c_{1} \mathrm{~A}+c_{2} \mathrm{~B}+c_{3} \mathrm{C}+c_{4} \mathrm{D}=c_{1}\left(x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}\right)+c_{2}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)+c_{3}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)+$ $c_{4}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(0,0,0,0)$
$c_{1} x_{1}+c_{2} y_{1}+c_{3} z_{1}+c_{4} w_{1}=0$
$c_{1} x_{2}+c_{2} y_{2}+c_{3} z_{2}+c_{4} w_{2}=0$
$c_{1} x_{3}+c_{2} y_{3}+c_{3} z_{3}+c_{4} w_{3}=0$
$c_{1} x_{4}+c_{2} y_{4}+c_{3} z_{4}+c_{4} w_{4}=0$
This system has non zero solutions for $c_{1}, c_{2}, c_{3}, c_{4}$ iff
$\Delta=\left|\begin{array}{llll}x_{1} & y_{1} & z_{1} & w_{1} \\ x_{2} & y_{2} & z_{2} & w_{2} \\ x_{3} & y_{3} & z_{3} & w_{3} \\ x_{4} & y_{4} & z_{4} & w_{4}\end{array}\right|=\left|\begin{array}{cccc}x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{1} & z_{2} & z_{3} & z_{4} \\ w_{1} & w_{2} & w_{3} & w_{4}\end{array}\right|=0$ i by theorem (1) the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar.
Conversely, if the points A, B, C, D are coplanar, then
$\Delta=\left|\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{1} & z_{2} & z_{3} & z_{4} \\ w_{1} & w_{2} & w_{3} & w_{4}\end{array}\right|=0$, then
$\left|\begin{array}{llll}x_{1} & y_{1} & z_{1} & w_{1} \\ x_{2} & y_{2} & z_{2} & w_{2} \\ x_{3} & y_{3} & z_{3} & w_{3} \\ x_{4} & y_{4} & z_{4} & w_{4}\end{array}\right|=0$, so the system
(1) of equations has non zero solutions for $c_{1}, c_{2}, c_{3}, c_{4}$. Thus $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are linearly dependent.

Theorem 7

Any five points (planes) in S are linearly dependent.

Proof

Let $\mathrm{A}\left(a_{1}, a_{2}, a_{3}, a_{4}\right), \mathrm{B}\left(b_{1}, b_{2}, b_{3}\right.$, $\left.b_{4}\right), \mathrm{C}\left(c_{1}, c_{2}, c_{3}, c_{4}\right), \mathrm{D}\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ and
$\mathrm{E}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be any five points in S . Let $a \mathrm{~A}+b \mathrm{~B}+c \mathrm{C}+d \mathrm{D}+e \mathrm{E}=\theta$

$$
\begin{aligned}
& a \quad\left(a_{1}, a_{2}, a_{3}, a_{4}\right)+b\left(b_{1}, b_{2}, b_{3}, b_{4}\right)+ \\
& c \quad\left(c_{1}, c_{2}, c_{3}, c_{4}\right)+d \quad\left(d_{1}, d_{2}, d_{3}, d_{4}\right)+ \\
& e\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=\theta \\
& a a_{1}+b b_{1}+c c_{1}+d d_{1}+e e_{1}=0 \\
& a a_{2}+b b_{2}+c c_{2}+d d_{2}+e e_{2}=0 \\
& a a_{3}+b b_{3}+c c_{3}+d d_{3}+e e_{3}=0 \\
& a a_{4}+b b_{4}+c c_{4}+d d_{4}+e e_{4}=0
\end{aligned}
$$

This system of 4 linear homogeneous equations in 5 unknowns a, b, c, d, e has non trivial solutions since $4<5$. Then A, B, C, D, E are linearly dependent.

Theorem 8

If $\quad P_{1}, P_{2}, \ldots, P_{m}$ are linearly independent points while $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{m+}$
1 are linearly dependent, then the coordinates of the points may be chosen so that $\mathrm{P}_{1}+\mathrm{P}_{2}+\cdots+\mathrm{P}_{m}=\mathrm{P}_{m+1}$.

Proof

Since the points $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{m+1}$ are linearly dependent, constants c_{1}, c_{2}, $\ldots, c_{m+1} \neq 0,0, \ldots, 0$ exist such that
$c_{1} \mathrm{P}_{1}\left(v_{1}\right)+c_{2} \mathrm{P}_{2}\left(v_{2}\right)+\cdots+c_{m} \mathrm{P}_{m}\left(v_{m}\right)+c_{m}$ ${ }_{+1} \mathrm{P}_{m+1}\left(v_{m+1}\right)=\theta$.

Now, $c_{m+1} \neq 0$, for otherwise the points $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{m}$ would be dependent contrary to hypothesis. The equation may, therefore, be solved for $\mathrm{P}_{m}+1$ giving

$$
\begin{aligned}
\mathrm{P}_{m+1} & =-\frac{1}{\mathrm{c}_{\mathrm{m}+1}}\left[c_{1} \mathrm{P}_{1}\left(v_{1}\right)+\cdots+c_{m} \mathrm{P}_{m}\left(v_{m}\right)\right] \\
& =k_{1} \mathrm{P}_{1}\left(v_{1}\right)+\cdots+k_{m} \mathrm{P}_{m}\left(v_{m}\right) \\
& =\mathrm{P}_{1}\left(k_{1} v_{1}\right)+\cdots+\mathrm{P}_{m}\left(k_{m} v_{m}\right)
\end{aligned}
$$

where $k_{i}=\frac{-c_{i}}{c_{m+1}}, i=1, \ldots, m$ or dropping the symbols $k_{i} v_{i}, \mathrm{P}_{m+1}=\mathrm{P}_{1}+$ $\mathrm{P}_{2}+\cdots+\mathrm{P}_{m}$.

Theorem 9

A point D is on the plane determined by three distinct points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ iff D is a linear combination of A, B, C.

Proof

If D is on the plane determined by three distinct points, then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar. By theorem (5), they are linearly dependent, there exist constants a, b, c, d such that not all of them are zero and $a \mathrm{~A}+b \mathrm{~B}+c \mathrm{C}+d \mathrm{D}=\theta$.

If $d=0$, then $a \mathrm{~A}+b \mathrm{~B}+c \mathrm{C}=\theta$, which implies that $a=b=c=0$, since $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are linearly independent, which is a contradiction. Since any three noncollinear points in the plane are
linearly independent, [3]. So $d \neq 0$, and then
$\mathrm{D}=\left(\frac{-a}{d}\right) \mathrm{A}+\left(\frac{-b}{d}\right) \mathrm{B}+\left(\frac{-c}{d}\right) \mathrm{C}$
Thus D is a linear combination of A, B, C. Suppose D is a linear combination of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, then there exist constants c_{1}, c_{2}, c_{3} not all of them are zero such that:
$\mathrm{D}=c_{1} \mathrm{~A}+c_{2} \mathrm{~B}+c_{3} \mathrm{C}$, which implies $c_{1} \mathrm{~A}+c_{2} \mathrm{~B}+c_{3} \mathrm{C}+(-1) \mathrm{D}=\theta$, then it follows that $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are linearly dependent. By theorem (5), the points A, $\mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar.

Theorem 10

The points of $\operatorname{PG}(3, K)$ have unique forms which are $(1,0,0,0),(x, 1,0,0)$, $(x, y, 1,0),(x, y, z, 1)$ for all x, y, z in K .

Proof

Let $\mathrm{P}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) ; x_{1} ; x_{2}, x_{3}, x_{4} \in \mathrm{~K}$ be any point in $\operatorname{PG}(3, K)$, then either $x_{4} \neq 0$ or $x_{4}=0$.

If $x_{4} \neq 0$, then $\mathrm{P}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \equiv$ $\mathrm{P}\left(\frac{x_{1}}{x_{4}}, \frac{x_{2}}{x_{4}}, \frac{x_{3}}{x_{4}}, 1\right)=\mathrm{P}(x, y, z, 1)$, where $x=\frac{x_{1}}{x_{4}}, y=\frac{x_{2}}{x_{4}}, z=\frac{x_{3}}{x_{4}}$.

If $x_{4}=0$, then either $x_{3} \neq 0$ or $x_{3}=0$.
If $x_{3} \neq 0$, then $\mathrm{P}\left(x_{1}, x_{2}, x_{3}, 0\right) \equiv$ $\mathrm{P}\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}, 1,0\right)=\mathrm{P}(x, y, 1,0)$, where $x=\frac{x_{1}}{x_{3}}, y=\frac{x_{2}}{x_{3}}$.

If $x_{3}=0$, then either $x_{2} \neq 0$ or $x_{2}=0$.
If $x_{2} \neq 0$, then $\mathrm{P}\left(x_{1}, x_{2}, 0,0\right) \equiv$ $\mathrm{P}\left(\frac{x_{1}}{x_{2}}, 1,0,0\right)=\mathrm{P}(x, 1,0,0)$, where
$x=\frac{x_{1}}{x_{2}}$.

If $x_{2}=0$, then $x_{1} \neq 0$ and $\mathrm{P}\left(x_{1}, 0,0,0\right) \equiv$
$\mathrm{P}\left(\frac{x_{1}}{x_{1}}, 0,0,0\right)=\mathrm{P}(1,0,0,0)$.
Similarly, one can prove the dual of theorem (10).

Theorem 11

The planes of $\mathrm{PG}(3, \mathrm{~K})$ have unique forms which are $[1,0,0,0],[x, 1,0,0]$, $[x, y, 1,0],[x, y, z, 1]$ for all x, y, z in K .

References

[1].Al-Mukhtar, A. S, "Complete Arcs and Surfaces in Three Dimensional Projective Space Over Galois Field", Ph.D. Thesis, University of Technology, Iraq, (2008).
[2]. Adler C.F, Modern Geometry, C.W. Post College of Long Island University, USA, (1976).
[3]. Hirschfeld, J. W. P, Projective Geometries Over Finite Fields, Second Edition, Oxford University Press, (1998).

[^0]: * School of Applied Sciences, University of Technology/ Baghdad
 ** Computer Department, Ibn Al-Haitham College of Education, University of Baghdad/ Baghdad

