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Abstract 

       The purpose of this work is to give some definitions and prove some theorems on 
projective 3-space S=PG(3,K) over a field K. 
        Also, the principle of duality in S is given which state that any theorem true in the 
projective 3-space concerned with the points, planes and the incidence relation, the same 
theorem is true by interchanging "point" and "plane" whenever they occur, where as the 
dual of a line is a line. 
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 حول الفضاء الثلاثي الاسقاطي
  الخلاصة
الغرض من هذا البحث هو لاعطاء بعض التعاريف وبرهنة بعض المبرهنـات فـي الفـضاء        

 الذي ينص علـى انSء مبدأ الثنائية في ، كذلك اعطا K حول الحقل    S=PG(3,K)الثلاثي الاسقاطي 
اي مبرهنة متحققة في فضاء ثلاثي اسقاطي تتعلق بنقاط، مستويات وعلاقة الوقوع، فان نفس المبرهنـة

.اينما يقعا، بينما ثنائي المستقيم يكون مستقيماً " المستوي"و " النقطة"تتحقق بتبديل 

Introduction 
     A projective 3–space PG(3,K) over a 
field K is a 3–dimensional projective 
space which consists of points, lines and 
planes with the incidence relation 
between them, [1]. 
     The projective 3–space satisfies the 
following axioms: 
A. Any two distinct points are contained 
in a unique line. 
B. Any three distinct non-collinear 
points, also any line and a point not on 
the line are contained in a unique plane. 
C. Any two distinct coplanar lines 
intersect in a unique point. 
D. Any line not on a given plane 
intersects the plane in a unique point. 
E. Any two distinct planes intersect in a 
unique line. 
     Principle of duality, [2] any properly 
worded valid statement in a projective      
3-space concerning incidence of points 
and planes gives rise to a second 
statement obtained from the first by 
interchanging the words "point" and 
"plane". 

Thus the dual elements are the point and 
the plane with the word "line" left 
unchanged. 
     Any point in PG(3,K) has the form of 
a quadrable (x1,x2,x3,x4), where x1, x2, x3, 
x4 are elements in K with the exception 
of the quadrable consisting of four zero 
elements. 
     Two quadrables (x1,x2,x3,x4) and 
(y1,y2,y3,y4) represent the same point if 
there exists λ in K\{0} such that 
(x1,x2,x3,x4) = λ (y1,y2,y3,y4). 
     Similarly, any plane in PG(3,K) has 
the form of a quadrable [x1,x2,x3,x4], 
where x1, x2, x3, x4 are elements in K 
with the exception of the quadrable 
consisting of four zero elements. 
     Two quadrables [x1,x2,x3,x4] and 
[y1,y2,y3,y4] represent the same plane if 
there exists λ in K\{0} such that 
[x1,x2,x3,x4] = λ [y1,y2,y3,y4]. 
     Also a point P(x1,x2,x3,x4) is incident 
with the plane π [a1,a2,a3,a4] iff  
a1 x1 + a2 x2 +a3 x3 + a4 x4=0.[3] 
     Now, some theorems on projective          
3-space PG(3,k) can be proved.
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Theorem 1: 

     Four distinct points A(x1, x2, x3, x4), 
B(y1, y2, y3, y4), C(z1, z2, z3, z4), and          
D(w1, w2, w3, w4) are coplanar iff 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0∆ = =

x x x x
y y y y
z z z z
w w w w

. 

Proof  
     Let π [u1,u2,u3,u4] be a plane 
containing the points A, B, C, D, then 

x1 u1 + x2 u2 + x3 u3 + x4 u4 = 0 

y1 u1 + y2 u2 + y3 u3 + y4 u4 = 0 

z1 u1 + z2 u2 + z3 u3 + z4 u4 = 0 

w1 u1 + w2 u2 + w3 u3 + w4 u4 = 0 

It is known from the linear algebra that 
this system of equations have non zero 
solutions for u1, u2, u3, u4 iff  ∆ = 0. Thus 
the necessary and sufficient conditions 
for four points to be coplanar that ∆ = 0. 
Corollary 

      If four distinct points A(x1, x2, x3, x4), 
B(y1, y2, y3, y4), C(z1, z2, z3, z4), and            
D(w1, w2, w3, w4) are collinear, then ∆=0. 
     This follows from theorem (1) and 
the incidence of these points on a line of 
some plane. 
     From the principle of duality, one can 
prove: 

Theorem 2 
     Four distinct planes A[x1, x2, x3, x4], 
B[y1, y2, y3, y4], C[z1, z2, z3, z4], and D[w1, 
w2, w3, w4] are concurrent (intersecting 
in one point) iff 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0∆ = =

x x x x
y y y y
z z z z
w w w w

 

 

 

Theorem 3 

     The equation of the plane determined 
by three distinct points A(y1, y2, y3, y4),      
B(z1, z2, z3, z4), and C(w1, w2, w3, w4) is 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4 3 1 4

2 3 4 1 3 1 4 2

2 3 4 3 1 4

1 2 4 3 2 1

1 2 4 3 3 2 1 4

1 2 4 3 2 1

0

=

+ +

+ =

x x x x
y y y y
z z z z
w w w w

y y y y y y
z z z x z z z x
w w w w w w

y y y y y y
z z z x z z z x
w w w w w w

where (x1, x2, x3, x4) be any variable 
point on the plane, and it’s coordinates 
are: 

2 3 4 3 1 4

2 3 4 3 1 4

2 3 4 3 1 4

1 2 4 3 2 1

1 2 4 3 2 1

1 2 4 3 2 1

, ,

,











y y y y y y
z z z z z z
w w w w w w

y y y y y y
z z z z z z
w w w w w w

 

Theorem 4 

     The equation of the point determined 
by three distinct planes (non-collinear) 
a[y1, y2, y3, y4], b[z1, z2, z3, z4], and          
c[w1, w2, w3, w4] is 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

=

x x x x
y y y y
z z z z
w w w w
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2 3 4 3 1 4

2 3 4 1 3 1 4 2

2 3 4 3 1 4

1 2 4 3 2 1

1 2 4 3 3 2 1 4

1 2 4 3 2 1

0

+ +

+ =

y y y y y y
z z z x z z z x
w w w w w w

y y y y y y
z z z x z z z x
w w w w w w

where [x1, x2, x3, x4] be any variable 
plane passing through the point, and it’s 
coordinates are: 

2 3 4 3 1 4

2 3 4 3 1 4

2 3 4 3 1 4

1 2 4 3 2 1

1 2 4 3 2 1

1 2 4 3 2 1

, ,

,













y y y y y y
z z z z z z
w w w w w w

y y y y y y
z z z z z z
w w w w w w

 

Notation 

        If v is the vector with components      
(a1, a2, a3, a4), then the symbol P(v) 
means that the coordinates of the point P 
are (a1, a2, a3, a4) in a projective 3–space                
S = PG(3,K). 

Definition 1:[3] 
        The points Pi(vi), with i = 1, …, m 
are linearly dependent or independent 
according as the vectors vi are linearly 
dependent or independent. 

Definition 2:[3] 

        If the points P1, P2, …, Pm are 
linearly dependent, then at least one of 
the ci’s of the equation 

1
( ) 0

=
Ρ =∑

m

i i i
i

c v  is 

not equal to zero, say c1, then                

P1 = 
1

1−
c

( c2 P2 + c3 P3 + ⋅⋅⋅ + cm Pm ). The 

point P1 is then said to be a linear 
combination of the points P2, P3, …, Pm. 

This definition may be dualized by 
replacing the word "point" by the word 
"plane", and the geometric meaning of 

linear dependence of points or planes 
may now be given. 

Theorem 5 

        Two points (planes) are linearly 
dependent iff they coincide. 

Proof  

        Let P and Q be any two points. If P 
and Q are linearly dependent, then there 
exist c1 and c2 such that (c1, c2) ≠ (0,0),          
c1 P + c2 Q = θ. 

If c1 = 0, then c2 Q = θ. 

This implies c2 = 0, since Q ≠ (0,0,0). 
Then c1 ≠ 0 and similarly c2 ≠ 0, 

2

1

c
Q

c
−

Ρ = . 

This means that P and Q coincide. If P 
and Q are coincide, then there exist c1≠ 
0, c2 ≠ 0 s.t. c1 P = c2 Q. 

Hence, c1 P − c2 Q = θ and thus P and Q 
are linearly dependent. 

Theorem 6 

        Four points are linearly dependent 
iff they are coplanar. 

Proof  

        Let A(x1, x2, x3, x4), B(y1, y2, y3, y4), 
C(z1, z2, z3, z4), and D(w1, w2, w3, w4) be 
any four points in S. If A, B, C, D are 
linearly dependent, then there exist c1, c2, 
c3 and c4 in K such that (c1, c2, c3, c4) ≠ 
(0,0,0,0) and c1 A+ c2 B+ c3 C + c4 D = θ 

c1 A + c2 B + c3 C + c4 D = c1 (x1, x2, x3, 
x4) + c2 (y1, y2, y3, y4) + c3 (z1, z2, z3, z4) +          
c4 (w1, w2, w3, w4) = (0,0,0,0) 

c1 x1 + c2 y1 + c3 z1 + c4 w1 = 0 

c1 x2 + c2 y2 + c3 z2 + c4 w2 = 0 

c1 x3 + c2 y3 + c3 z3 + c4 w3 = 0 

c1 x4 + c2 y4 + c3 z4 + c4 w4 = 0 

…(1) 

This system has non zero solutions for 
c1, c2, c3, c4 iff  
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1 2 3 41 1 1 1

1 2 3 42 2 2 2

1 2 3 43 3 3 3

1 2 3 44 4 4 4

0∆ = = =

x x x xx y z w
y y y yx y z w
z z z zx y z w
w w w wx y z w

by theorem (1) the points A, B, C, D are 
coplanar. 

Conversely, if the points A, B, C, D are 
coplanar, then  

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0∆ = =

x x x x
y y y y
z z z z
w w w w

, then  

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

0=

x y z w
x y z w
x y z w
x y z w

, so the system 

(1) of equations has non zero solutions 
for c1, c2, c3, c4. Thus A, B, C, D are 
linearly dependent. 

Theorem 7 

        Any five points (planes) in S are 
linearly dependent. 

Proof  

        Let A(a1, a2, a3, a4), B(b1, b2, b3, 
b4), C(c1, c2, c3, c4), D(d1, d2, d3, d4) and 

E(e1, e2, e3, e4) be any five points in S. 
Let  a A + b B + c C + d D + e E = θ 

a (a1,a2,a3,a4) + b (b1,b2,b3,b4) +                   
c (c1,c2,c3,c4) + d (d1,d2,d3,d4) + 
e(e1,e2,e3,e4) = θ 

a a1 + b b1 + c c1 + d d1 + e e1 = 0 

a a2 + b b2 + c c2 + d d2 + e e2 = 0 

a a3 + b b3 + c c3 + d d3 + e e3 = 0 

a a4 + b b4 + c c4 + d d4 + e e4 = 0 

This system of 4 linear homogeneous 
equations in 5 unknowns a, b, c, d, e has 
non trivial solutions since 4 < 5. Then A, 
B, C, D, E are linearly dependent. 

Theorem 8 

     If  P1, P2, …, Pm are linearly 
independent points while P1, P2, …, Pm + 

1 are linearly dependent, then the 
coordinates of the points may be chosen 
so that P1 + P2 + ⋅⋅⋅ + Pm = Pm + 1. 

Proof  

     Since the points P1, P2, …, Pm + 1 are 
linearly dependent, constants c1, c2, 
…,cm + 1 ≠ 0, 0, …, 0 exist such that 

c1 P1(v1) + c2 P2(v2) + ⋅⋅⋅ + cm Pm(vm) + cm 

+ 1 P m + 1(v m + 1) = θ. 

Now, cm + 1 ≠ 0, for otherwise the points 
P1, P2, …, Pm would be dependent 
contrary to hypothesis. The equation 
may, therefore, be solved for Pm + 1 
giving 

Pm + 1=
m 1

1
c +

− [ c1 P1(v1) +⋅⋅⋅ + cm Pm(vm) ] 

        = k1 P1(v1) + ⋅⋅⋅ + km Pm(vm) 

        = P1(k1 v1) + ⋅⋅⋅ + Pm(km vm) 

where 
1+

−
= i

i

m

c
k

c
, i = 1, …, m or 

dropping the symbols ki vi , Pm + 1=P1+ 
P2+⋅⋅⋅+Pm. 

Theorem 9 

     A point D is on the plane determined 
by three distinct points A, B, C iff D is a 
linear combination of A, B, C. 

Proof  

     If D is on the plane determined by 
three distinct points, then A, B, C, D are 
coplanar. By theorem (5), they are 
linearly dependent, there exist constants 
a, b, c, d such that not all of them are 
zero and  a A + b B + c C + d D = θ. 

If d = 0, then a A + b B + c C = θ, which 
implies that a = b = c = 0, since A, B, C 
are linearly independent, which is a 
contradiction. Since any three 
noncollinear points in the plane are 
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linearly independent, [3]. So d ≠ 0, and 
then 

D = ( )−a
d

 A + ( )−b
d

 B + ( )−c
d

 C 

Thus D is a linear combination of A, B, 
C. Suppose D is a linear combination of 
A, B, C, then there exist constants c1, c2, 
c3 not all of them are zero such that: 

D = c1 A + c2 B + c3 C, which implies           
c1 A + c2 B + c3 C + (–1) D = θ, then it 
follows that A, B, C, D are linearly 
dependent. By theorem (5), the points A, 
B, C, D are coplanar. 
Theorem 10 

        The points of PG(3,K) have unique 
forms which are (1,0,0,0), (x,1,0,0),          
(x, y,1,0), (x, y, z,1) for all x, y, z in K. 

Proof  

        Let P(x1, x2, x3, x4); x1; x2, x3, x4 ∈ K 
be any point in PG(3,K), then either x4≠0 
or x4 = 0. 

If  x4 ≠ 0, then P(x1, x2, x3, x4) ≡ 
31 2

4 4 4

( , , ,1)Ρ
xx x

x x x
 = P(x, y, z, 1), where  

1

4

=
x

x
x

, 2

4

=
x

y
x

, 3

4

=
x

z
x

. 

If  x4 = 0, then either x3 ≠ 0 or x3 = 0. 

If  x3 ≠ 0, then P(x1, x2, x3, 0) ≡ 
1 2

3 3

( , ,1, 0)Ρ
x x
x x

 = P(x, y, 1, 0), where  

1

3

=
x

x
x

, 2

3

=
x

y
x

. 

If  x3 = 0, then either x2 ≠ 0 or x2 = 0. 

If  x2 ≠ 0, then P(x1, x2, 0, 0) ≡ 
1

2

( ,1, 0,0)Ρ
x
x

 = P(x, 1, 0, 0), where  

1

2

=
x

x
x

. 

If  x2 = 0, then x1 ≠ 0 and P(x1, 0, 0, 0) ≡ 
1

1

( , 0,0,0)Ρ
x
x

 = P(1, 0, 0, 0). 

     Similarly, one can prove the dual of 
theorem (10). 

Theorem 11 
     The planes of PG(3,K) have unique 
forms which are [1,0,0,0], [x,1,0,0],          
[x, y,1,0], [x, y, z,1] for all x, y, z in K. 
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