T-Semi Connected Spaces

Bushra Kadum Awaad* & Dr. Hadi J. Mustafa**

Received on:5/5/2010 Accepted on:5/8/2010

Abstract

In this paper, we introduce a new concept, namely T-semi connected space, where T is an operator associated with the topological T defined on a nonempty set X. Several properties of this concept are proved.

Keywords: Semi connected, T-semi connected.

الخلاصة

في هذا البحث، قدمنا مفهوماً جديداً إلا وهو مفهوم الفضاء شبه المتصل-T حيث T هو مؤثر مرتبط بالتبولوجي t المعرف على مجموعة غير خالية X. قد بر هنت عدة خصائص لهذا النوع من الفضاءات.

1- Introduction:

In [4], the concept of semi connected set is given. In this paper, we introduce the concept of T-semi connected set and show that it generalizes the concept of semi connected set when the operator T is the identity operator.

Throughout this paper, we use the following notations: cl(A) denotes the usual closure and int(A) denotes the interior of a set A.

2- Basic Definitions and Results:

In this section, we recall and introduce the basic definitions needed in this work.

Definition (2.1):

Let (X, τ) be a topological space and let T be an operator associated with τ , (X, τ, T) is called an operator topological space, [2].

Let $A \subseteq X$, we say that A is Tsemi open if there exists an open set $U \in \tau$, such that:

$$U \subseteq A \subseteq T(U)$$

The complement of a T-semi open set is called a T-semi-closed set.

Remarks (2.2):

- (i) If T is the closure operator (T(A) = cl(A)), the above definition agrees with the definition of semi-open set which is given by Levin in [1].
- (ii) If T is the identity operator (T(A) = A) the definition of T-semi-open set agrees with the definition of open set.
- (iii) For any operator T, each open set is T-semi-open set.

Example

Let (X, τ, T) be an operator topological space, where T is the closure operator and T – semi open set will be the usual semi – open set (the usual semi open set

 $G \subseteq W \subseteq G = CL(G)$ and Tsemi open set $G \subseteq W \subseteq T(G)$) Consider X = (IR, tu) and A = [0,1)is the T – semi open set (T is the

https://doi.org/10.30684/etj.28.19.12

2412-0758/University of Technology-Iraq, Baghdad, Iraq This is an open access article under the CC BY 4.0 license <u>http://creativecommons.org/licenses/by/4.0</u>

^{*}College of Education, Al-Mustansiryah University/Baghdad

^{**} College of Science, Al-Kufa University/ Al-Najaf Ashraf

closure operator) but A is not open set.

Before we state the next proposition, we recall the following definition:

Definition (2.3), [2]:

Let (X, τ, T) be an operator topological space. We say that T is a monotone operator if for every pair of open sets U and V, such that $U \subset V$, we have that $T(U) \subset T(V)$.

The closure operator is a monotone operator.

Proposition (2.4):

Let (X, τ, T) be an operator topological space, where T is a monotone operator. Let $A \subseteq X$, A is T-semiopen set if and only if $A \subseteq T$ (int(A)).

Proof:

Suppose that $A \subseteq T$ (int(A)) Notice that:

 $int(A) \subseteq A \subseteq T(int(A))$

which means that A is T-semiopen set Now, suppose that A is T-semiopen set

Then there exists an open set U, such that $U \subseteq A \subseteq T(U)$

Now, $U \subseteq A \longrightarrow U \subseteq int(A)$ [where int $U \subseteq int(A)$ but U is open set, U= int $U \longrightarrow U \subseteq int(A)$]

So, $T(U) \subseteq T(int(A))$, since T is a monotone operator

So, $A \subseteq T$ (int(A)). < *Remark (2.5):*

If T is the closure operator, then A is T-semiopen set if and only if $A \subseteq cl(int(A))$, and this agrees with the equivalence given by Levin in [1]. **Proposition (2.6):**

Let (X, τ, T) be an operator topological space, where T is the closure operator and let $S \subseteq X$. Then S is T-semi closed if and only if there exists a closed subset F of X, such that int(F) $\subseteq S \subseteq F$. **Proof**:

Suppose that: $Int(F) \subseteq S \subseteq F$ (F is closed) Then $F^c \subset S^c \subset (int(F))^c$ Now, $(int(F))^c = cl(F^c)$ So, $F^c \subset S^c \subset cl(F^c)$ Which means that S^c is T-semiopen. Hence S is T-semiclosed. Conversely, if S is Tsemiclosed Then S^c is T-semiopen Therefore, there exists an open set U, such that: $U \subseteq S^{c} \subseteq cl(U) = T(U)$ So $(cl(U))^{c} \subseteq S \subseteq U^{c}$

But $(cl(U))^c = int(U^c)$

So,
$$int(U^c) \subseteq S \subseteq U^c$$
. <

Remark (2.7): [3]

Let (X, τ, T) be an operator topological space, where T is the closure operator. Then a subset S of X is T-semiclosed if and only if int $(T(S)) \subseteq S$.

Definition (2.8):[3]

Let (X, τ, T) be an operator topological space, where T is a monotone operator and let $S \subseteq X$, then the union of all T-semi open sets contained in the set S is T-semi open, and it is denoted by T-sInt(S).

We show this as follows :

 $F = \{ w_{\alpha} : \alpha \in U \}$

 $\begin{array}{l} w_{\alpha} \ \text{is the T-semi open} \\ G_{\alpha} \subseteq w_{\alpha} \subseteq T \ (G_{\alpha}) \\ \textbf{U} \ G_{\alpha} \subseteq \textbf{U} \ w_{\alpha} \subseteq \textbf{U} \ T \ (G_{\alpha}), \end{array}$

 $[\mathbf{U} \ T (\mathbf{G}_{\alpha}) = \ T (\mathbf{U} \ \mathbf{G}_{\alpha}) = T(\mathbf{G})]$

$$G \subseteq \mathbf{U} \ w_{\alpha} \subseteq$$

Remark (2.9):[3]

If T is a monotone operator, the intersection of all T-semi closed sets of X containing the set S is T-semi closed. It is called the T-semi closure of S and is denoted by T-scl(S).

T (G)

So, S is T-semi closed if and only if T-scl(S) = S.

3. Main Results:

In this section, several properties and characterizations of T-semi connected spaces are given.

Definition (3.1):

[See Willard [4]and Def (3.1) is analogous to the definition given in Willard]

(i) Let (X, τ, T) be an operator topological space. Let Ø ≠ A ⊆ X, Ø ≠ B ⊆ X We say that A and B are T-semi separated if: (T - scl(A)) ∩ B = A ∩ (T -

 $\operatorname{scl}(B) = \emptyset$

- (ii) Let W ⊆ X, we say that W is Tsemi disconnected if W can be expressed as the union of two Tsemi separated sets
- (iii) Let W ⊆ X, we say that W is Tsemi connected if W is not Tsemi disconnected, that is, if W cannot be expressed as the union of two T-semi separated sets.
- (iv) (X, τ, T) is said to be T-semi connected if and only if X is Tsemi connected.

Remark (3.2):

Let (X, τ, T) be an operator topological space, where T is the identity operator (In this case we write (X, τ) instead of (X, τ, T)) let $A \subseteq X$, $B \subseteq X$. The definition of Tsemi separated sets agrees with the definition of separated sets in the usual sense

 $cl(A) \cap B = A \cap cl(B) = \emptyset$ and therefore the definition of T-semi connected set generalizes the definition of connected set.

Example:

Let (X, τ, T) be an operator topological space consider X= (IR , t_u) and

Y = [0,1] **U** [2,3] then Y is not connected but Y is T- semi connected

(where T is the closure operator). *Theorem (3.3):*

Let (X, τ, T) be an operator topological space. Then X is T-semi connected if and only if the only subsets of X that are both T-semi open and T-semi closed in X are the empty set and X itself.

Proof:

Let $A \subseteq X$ be a non-empty proper subset of X, which is both Tsemi open and T-semi closed in X, then the sets U = A and $V = A^c$ constitute a T-semi separation of X. So X will be T-semi disconnected.

Conversely, if U and V form Tsemi separation of X and $X = U \cup V$, then U is a non-empty and different from X, since:

$$U \cap V \subseteq U \cap (T - scl(V))$$

 $= (T-scl(U)) \cap V = \emptyset$ We obtain that both sets U and V are T-semi open and T-semi closed. < **Theorem (3.4):**

Let (X, τ, T) be an operator topological space, if $A \subseteq X$ is a Tsemi connected and $A \subseteq C \cup D$, where C and D are T-semi separated sets, then either $A \subseteq C$ or $A \subseteq D$. *Proof:*

 $A = A \cap (C \cup D)$

$$= (A \cap C) \cup (A \cap D)$$

Since C and D are T-semi separated sets

$$C \cap (T - scl(D)) = \emptyset$$

 $(A \cap C) \cap (T-scl(A)) \cap (T-scl(D)) \subseteq C \cap (T-scl(D)) = \emptyset$ So if both $A \cap C \neq \emptyset$ and $A \cap D \neq \emptyset$, then A is T-semi disconnected This shows that either $A \cap C = \emptyset$, or $A \cap D = \emptyset$ So $A \subseteq C$, or $A \subseteq D$. <

5958

The proof of the following theorem is clear:

Theorem (3.5):

Let (X, τ, T) be an operator topological space, then the union E of any family {C | $i \in I$ } of T-semi connected sets having a non-empty intersection is T-semi connected. *Theorem (3.6):* Let (X, τ, T) be an operator

topological space, and let $C \subseteq X$, $E \subseteq X$. If C is T-semi connected and

 $C \subset (T-scl(E)) \subseteq T-scl(C)$ Then (T-scl(E)) is T-semi connected.

Proof: Suppose that T-scl(E) is T-semi

disconnected So T-scl(E) = A \cup B, where $\emptyset \neq$ A, \emptyset

≠B

 $A \cap (T-\operatorname{scl}(B)) = B \cap (T-\operatorname{scl}(A)) = \emptyset$

Now, $C \subseteq A \cup B$ and C is T-semi connected, so:

 $C \subseteq A$ or $C \subseteq B$

Let us assume that $C \subseteq A$

Now, T-scl(C) \subseteq T-scl(A)

 $\begin{array}{rcl} T\text{-scl}(C) \cap B \ \subseteq \ T\text{-scl}(A) \ \cap \ B \\ = \varnothing \end{array}$

But $B \subseteq T$ -scl $(E) \subseteq T$ -scl(C)

So
$$B = \emptyset$$

Hence, T-scl(E) is T-semi connected. <

Corollary (3.7):

Let (X, τ, T) be an operator topological space, let $C \subseteq X$. If C is T-semi connected, then T-scl(C) is also T-semi connected. **Proof:**

 $C \subseteq T\text{-scl}(C) \subseteq T\text{-scl}(C)$ So by theorem (3.6), we get that T-scl(C) is T-semiconnected. <

4. References:

- N. Levir, "Semi Open Set", American Mathematical Monthly, 70, (1963), 36-39.
- [2] Hadi J Mustafa, "Operator Topological Spaces", accepted in the Journal of the college of Education AL- Mustansiriyah University 2010.
- [3] Hadi J Mustafa "T* connected and T* - compact ", the first conference of Kufa University 2008.
- [4] S. Willard, "General Topology", Addison-Wesely Publishing Company, 1970.