
Eng. & Tech. Journal, Vol.28, No.24, 2010

*Computer Science Department, University of Technology/ Baghdad
6995

Developing Backtracking Algorithm to Find the Optimal
Solution Path

Dr. Suhad M. Kadhum* & Isra’a A. Abdul-Jabbar*
Received on: 8/2/2010

Accepted on: 2/12/2010

Abstract
There are numerous search methods in A.I used to find the solution path to a

subjected problem, but many of them return one solution path with no consider it is
the optimal or not.

The aim of this work is to find a direct path from the start state to the goal state
such that it is the shortest path with minimum cost (the optimal solution path).

We develop the backtracking algorithm in order to find the optimal solution
path, such that all possible paths of the problem that expected to contain the optimal
solution path can be checked, also we use a heuristic function depends on the actual
cost of transition from one state to another. And in order to reduce the search time
we discard any path that it is not useful in finding the optimal solution path.

The proposed algorithm was implemented using visual prolog 5.1 and tested on
tree diagram and the result was good in finding the optimal solution path (with
efficient search time equivalent to O(bd/2) and space complexity O(bd) in worst
cases).

Keywords: Artificial Intelligence, Search Algorithm, Optimal Path, Heuristic
 Search, Backtracking Strategy.

 تطویر خوارزمیة الرجوع لإیجاد المسار الامثل للحل

 الخلاصة
هناك العديد من طرق البحث في الذكاء الاصطناعي المستخدمة لإيجاد مسار حل للمشـكلة

لكن العديد منها ترجع مسار حل واحد دون الاخذ بنظر الاعتبار هل ان هذا المسـار المطروحة،
 .يمثل الحل الامثل ام لا

البحث هو ايجاد مسار مباشر من الحالة الابتدائية الى الحالة الهدف باقل كلفة الهدف من هذا
).المسار الامثل للحل(وباقصر طريق

تم تطوير خوارزمية الرجوع للخلف لإيجاد المسار الأمثل للحل، بحيـث ان كـل المسـارات
ها، وقد استخدمنا دالة الممكنة التي من المتوقع ان تحتوي على المسار الامثل للحل سوف يتم تدقيق

ولتقليل وقت البحث سـنهمل أي. موجهة تعتمد على الكلفة الحقيقية للانتقال من حالة الى اخرى
تم تنفيذ الخوارزمية المقترحة باستخدام لغة برولوك .مسار غير مفيد في ايجاد المسار الامثل للحل

 دة في ايجاد المسار الامثل للحلوتم اختبارها على مخطط شجري، وكانت النتائج جي 5.1المرئية
.)في اسوء الحالات O(bd)وتعقيد O(bd/2) مع كفاءة في وقت البحث تقارب(

https://doi.org/10.30684/etj.28.24.13
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

http s://doi.org/10.30684/etj.28.24.13

Eng. & Tech. Journal, Vol.28, No. 24, 2010 Developing Backtracking Algorithm to

 Find the Optimal Solution Path

 6996

1. Introduction
As far as search algorithm is

concerned it is a global problem
solving mechanism in artificial
intelligence. Search algorithms are
used for a multitude of AI tasks one
of them is path finding .AI area of
search is very much connected to
problem solving. AI has investigated
search methods that allow one to
solve path problems in large domains.
Having formulated problems we need
to solve them and it is done by
searching through the state space
during this process search tree is
generated by taking initial state and
applying the successive function to it
[1].

In computer science, a search
algorithm is an algorithm that takes a
problem as input and returns a
solution to the problem, usually after
evaluating a number of possible
solutions. Most of the algorithms
studied by computer scientists that
solve problems are kinds of search
algorithms. The set of all possible
solutions to a problem is called the
search space. Brute-force search or
uninformed search algorithms use the
simplest method of searching through
the search space, whereas informed
search algorithms use heuristic
functions to apply knowledge about
the structure of the search space to try
to reduce the amount of time spent
searching [2].

 Blind searches will find any
path. Heuristic searches will (usually)
find any path, but will do so faster
(usually) than blind search.
Sometimes it's ok to find just any path
to the goal as long as you get there.
But sometimes you want to find the
best path to the goal. The fastest,
cheapest, or easiest route to take is
oftentimes more important than

finding some path. That's where
optimal search comes in the methods
that follow are intended to find the
optimal path. One time-honored way
of doing this is to find a method to
measure the "goodness" of a state that
is, to determine how close a given
state is to the goal state. If we could
make that evaluation consistently and
correctly, then when we look at a list
of states in trying to decide which to
use next to generate new states, we
could pick the state closest to the
goal, instead of just picking the first
one we see or picking one at
random[3].

Our proposed search
algorithm will not find any path to the
goal only but tried to get all possible
paths for the problem (except those
that not useful in finding the optimal
solution path) then decide the optimal
path to the goal according to its cost
and its number of states.
2. Background

Newell and Simon in 1976
defined that intelligent behaviors
come from the manipulation of
symbol entities that represent other
entities and that process by which
intelligence arises is called heuristic
search [1].
2.1 Problem Solving and Search

A search algorithm takes a
problem as input and returns the
solution in the form of an action
sequence. Once the solution is found,
the actions it recommends can be
carried out. This phase is called the
execution phase. After formulating a
goal and problem to solve, the agent
calls a search procedure to solve it. A
problem can be defined formally by
four components which are [1]:
 · The Initial State: The state in which
agent starts.
 · Successor function: Description of

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No. 24, 2010 Developing Backtracking Algorithm to

 Find the Optimal Solution Path

 6997

possible actions and their outcomes.
 · Goal Test: It determines that if the
given state is the goal state.
 · Path Cost: It is the summation of
the actual cost of transition from one
state to another.

2.2 Depth First Search

In depth – first – search,
when a state is examined, all of its
children and their descendants are
examined before any of its siblings.
Depth – first search goes deeper in to
the search space when ever this is
possible only when no further
descendants of a state can found [4].
2.3 Backtracking [4]

Backtracking is a systematic
method to iterate through all the
possible states of a search space.
Backtracking is really just depth-first
search but it can support a direct
solution path.

Backtracking can easily be
used to iterate through all subsets or
permutations of a set. Backtracking
ensures correctness by enumerating
all possibilities. For backtracking to
beneficent, we must prune the search
space.
 Backtracking search begins at
the start state and pursues a path until
it reaches a goal or "dead end", if it
reaches a goal, it returns the solution
path and quits. If it reaches a dead
end, it backtracks to the most recent
node in the path having unexamined
siblings and continues down on of
those branches.
The algorithm of backtracking search
is as follow:
{
SL:=[start]; NSL:=[start];
DE:=[]; CS:=start;
While NSL!=[]
{
If CS=goal then Return SL; /*
success*/

If CS has no children (except on DE,
SL, NSL) then
{
While SL!=[] and CS=first element of
SL
{
Add CS to DE; /* dead end*/
Remove first element of SL;
Remove first element of NSL;
CS:=first element of NSL;
}
Add CS to SL;
}
Place children of CS (except those on
DE, SL, NSL) on NSL
CS:= first element of NSL;
Add CS to SL;
}
Return fail; /* failure*/
} /* end algorithm*/
2.4 Heuristics Search

Heuristic is a problem specific
knowledge that decreases expected
search efforts. It is a technique which
sometimes work but not always.
Heuristic search algorithms use
information about the problem to help
directing the path through the search
space. These searches use some
functions that estimate the cost from
the current state to the goal presuming
that such function is efficient.
Generally heuristic incorporates
domain knowledge to improve
efficiency over blind search .In AI
heuristic has a general meaning and
also a more specialized technical
meaning. Generally a term heuristic is
used for any advice that is effective
but is not guaranteed to work in every
case.
2.4.1 Best First Search

Best first search is one of the
most common heuristic search
methods, and in this method, it uses
an evaluation function and always
chooses the next node to be that with
the best score.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No. 24, 2010 Developing Backtracking Algorithm to

 Find the Optimal Solution Path

 6998

The basic algorithm of best first
search is as follow [5]:
1. S

tart with open=[initial-state].
2. W

hile open !=[] do
a. P

ick the best node on open.
b. I

f it is the goal node then return
with success. Otherwise find its
successors.

c. A
ssign the successor nodes a
score using the evaluation
function and add the scored
nodes to open.

3. The Proposed Search Strategy
We develop the backtracking

algorithm (described in 2.3) in order
to find the optimal solution path, and
we use a heuristic function depends
on the actual cost of transition from
one state to another.

In this method we will take the
start state as the initial state and work
forward chaining scanning for the
goal by using the concept
backtracking algorithm. And the cost
of the current path is calculated by
adding the cost of the current state to
the previous cost each time we reach
a new state, and if a dead end state
(the state with no children) appears,
the search return up trying to find
another solution path (backtracking)
and discard the cost of all dead states.
If the parent state has no other child
(except those dead ends) then we will
deal this state as a dead end also and
continue this steps until we find the
first goal (if it's exist) the solution
path for this goal will be a direct path
from the start state to the end state.
This algorithm will continue trying to
find all possible solution paths in
order to decide the optimal one. We
will deal the goal state as a dead end

after storing its path and its cost in a
temporary variable in the external
database. If another solution path
found then its cost will be compared
with the stored one to decide which
one is the best, also we take the
number of states of the solution paths
in our account. And each time we
reach any path that have a cost higher
than (or equal to) the stored cost, we
will discard that path and dealing with
the current state as a dead end, until
all the tree of the problem was
searched, then the stored path will be
the optimal solution path and its cost
will be the optimal one.
3.1 Data Representation

The problem was represented
as a tree and the data of this tree was
represented in the program as logical
terms, where each term has he
following form:
move (State1, State2, Cost).
Where:
 move: the predicate name.
State1: the parent node and has a
"symbol" data type.
State2: the child node and has a
"symbol" data type.
Cost: the actual cost of transition
from state1 to state2 and has an
integer data type.
These logical terms will represent the
input to the proposed algorithm.
Such as if we have the following sub
tree:

A

C B

5 8

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No. 24, 2010 Developing Backtracking Algorithm to

 Find the Optimal Solution Path

 6999

The data of this sub tree was
represented in the program as:
move (A,B, 5).
move (A,C, 8).

3.2 The Design of the Proposed
Algorithm
The proposed algorithm uses three
lists, they are:
1. NSL: The new state list contains
nodes waiting evaluation, nodes
whose descendants have not yet been
generated and searched. And this is a
list of the logical terms:

n(State, C)
Where:
n: is the predicate name.
State: symbol represents the state.
C: integer value represents the cost of
this state.
2. SL: The state list, lists the states
in the current path being tried, if a
goal is found, SL contains the ordered
list of states on the solution path
(direct path from the start state to the
goal state) , and this is a list of
logical terms:
s (State, C, L)
Where:
s: the predicate name.
State: symbol represents the state.
C : integer value represents the cost
of this state.
L : list of symbols represents the
children of this state.
3. D
E: dead end it is a list of symbols, the
state is put in this list in one of the
following cases:
-The state that have no child.
-The state that all its descendants are
found in DE and not found in NSL.
-The state that it is a goal.
-The state that we expect it is not
useful to find optimal path (when the
cost of the current path is greater or
equal to the stored cost of current
optimal solution path).

3.3 The Proposed Search Algorithm
Input: logical terms represent the tree
of the problem.
Output: A list of states represents the
direct optimal solution path(P), and its
cost (C).

 Process:
{
 P= []; /* the optimal path*/
 C=LARGE_VALUE;
/*The cost of the optimal path*/
 CC= 0;
/* the cost of the current path*/
 NSL:= [n (Start, 0)];
 SL:= [];
 DE:= [];

Step1: If (NSL ==[]) then goto Step5;
 Remove the first term (n(X, N)) from
NSL; /* CS */
 CC =N+CC;
 If(X is the goal state) then
 {
 List1= [];
/* discard all its children if any *
 Let Len1 be the length of SL;
Let Len2 be the length of P;
If ((CC <C) or (CC == C and Len1<
Len2)) then
 {
 Let P be the list of states of SL;
 C= CC;
 }
 Goto Step2 ;
}
 If (CC >= C) then
 /* discard this path*/
{
 List1:=[];
 Goto Step2 ;
 }
 Get all children of X with their
 cost and put them in List2;
 /* as logical terms with predicate
name n */

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No. 24, 2010 Developing Backtracking Algorithm to

 Find the Optimal Solution Path

 7000

 Let List1 be a list of states of
List2;
Step2: Add the term (s(X, N, List1))
to the SL;
/*to the beginning of SL */
 If (List1! = []) then
 {
 Add List2 to the NSL; /* to the
beginning of the NSL*/
 Goto Step1;
 }
Step3: Let s(H, K, CL) be the first
term in SL;
Step4: If (CL== []) then
 {
 CC = CC -K;
 remove s(H,K,CL)from SL;

 Put H in DE;
 Goto Step3;

 }
 Let S1 be the first element in
CL;
 If ((S1 is member in DE)
 AND
(S1 is not member in the states of
NSL)) Then
 {
 Remove S1 from CL;
 Goto Step
 }
 Goto Step1;
Step5: If (P== []) then Return failure;
 /* the goal is not found*/
 Print the optimal path (P) and
its minimum cost (C);
 }
/*end the algorithm*/

3.4 Implementation of the Proposed
Algorithm

The Proposed algorithm
implemented with visual prolog and
tested by tree diagram shown in figure
(1), which has start state represented
by the node (A) and the goal state
represented by the node (K), this
graph shown that there are six nodes

in the diagram known as (K), the
proposed strategy returned the direct
optimal solution path from (A to K)
with minim cost and shortest path, the
implementation result shown in Table
(1).
4. Discussion

Sometimes we want to find just
any path to the goal (solution path),
but sometimes we want to find the
best path to the goal (optimal solution
path) and this is the aim of our work.

In this paper we suggest a
method that find all possible solution
paths (that we expect it may be the
optimal) and then take the optimal
one.

At the first step we use the
depth-first search in order to find the
first solution path but we find that this
method not support us with the direct
path to the goal and it is also test all
states, which it is in sometimes
considered to be time consuming,
therefore we develop our proposed
search by using the facility of
backtracking search by discarding the
states that not lead to direct solution
path. Also we used the concept of
heuristic search that support each
transition from a state to another with
a cost that useful in finding the
optimal solution path.

After we find the first direct
solution path, we store this path and
its cost, then we develop the proposed
algorithm in order to find all possible
solution paths, and each time we find
a new solution path we compare its
cost and number of its states with the
stored one in order to find the optimal
path. And in order to reduce search
time we develop the proposed
algorithm by adding some conditions
and constraints that prevent testing
states and paths that it is not useful in
finding the optimal solution path.

We compare the proposed

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No. 24, 2010 Developing Backtracking Algorithm to

 Find the Optimal Solution Path

 7001

algorithm with one common heuristic
search method (described in 2.4.1),
and found it is a good method in
finding the direct optimal solution
path with efficient search time, see
the table(1).
To discuss the result of the proposed
search a complete comparison was
produced between our method and
other search method like best first
search and A* algorithm in worst time
and space complexity in the execution
of algorithms see table (3).

If each node has b descendants, then
 Level0 (the root node) has 1 node
Level 1 has b node
Level 2 has b*b node
Level 3 has b2*b=b3
.
.
Level d has bd-1*b =bd

If a decent heuristic for ordering
moves can be found , then half the
nodes need not to be evaluated,
therefore the time complexity is cut in
half and be O(bd/2).The space is
dominated by the size of the queue
that have list of partial paths and in
worst case is equivalent to the
complexity of depth-first search
depending on the goal on leaf node of
the tree and this require (d) times
,until reach to leaf node.
5. Conclusions
In this paper the following points can
be concluded:
1 Developing the backtracking
algorithm and using the concept of
heuristic search can be consider as a
good method in finding the optimal
direct solution path.
2 In order to find the optimal
solution path we must search all

possible solution paths that we expect
it may contain the optimal solution
path.
3 Getting an efficient search time
by discarding the paths that we expect
to be not useful in finding the optimal
solution path.
4 Checking all the tree’s states of
the problems consider to be time
consuming, so we develop the search
strategy by adding some conditions
and constrains that lead the search
direction such as:
• If the state is the goal then we
will discard all its descendent because
it will not contain solution path better
than the found one.
• Each time we reach a new state,
such that the cost of the path under
test become larger than or equal to the
stored one we discard all the
descendent of this state.
References:
[1]Kamran Zaheer ,"Artificial

Intelligence Search Algorithms In
Travel Planning", Department of
Computer sciences and
Electronics Mälardalen
University Västerås Sweden,
2006.

[2]Poli, Langdon, and McPhee," A
Field Guide to Genetic
Programming", 2009.

[3]Senior Diablo," Beginners Guide
to Path finding Algorithms",
2007.

[4]William A. Stubblefield & Luger
E.George, ”Artificial Intelligence
and the Design of Expert
Systems”, 1998.

[5]Stuart J. Russell and Peter Norvig,"
Artificial Intelligence: A Modern
Approach Prentice Hal", 2003.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No. 24, 2010 Developing Backtracking Algorithm to

 Find the Optimal Solution Path

 7002

Table (1): The Proposed Algorithm Implementation Result

“The optimal solution path is [A-D-K] and its Cost is 6”

CS: The current state (state under test).
 SL, NSL, and DE: is a state list, new state list and dead end list respectively.
CC: is the current cost of the path under test.
 C: is the cost of optimal solution path.
Table (2): Comparison between the proposed method and Best –First search

The Proposed Method Best First Search
Find the optimal solution path, since
all the tree of the problem was
searched.

Find the first best solution path with
no consider it is the optimal or not.

Efficient search time because of
discarding the paths that not contain
the optimal path.

There are no additional conditions or
constraints to reduce the search time.

Take the number of states of optimal
path in its account.

Does not take the number of states of
optimal path in its account.

Find a direct solution path (from the
start state to the goal states).

Cannot find a direct solution path,
since each time, the states rearranged
according to its cost.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No. 24, 2010 Developing Backtracking Algorithm to

 Find the Optimal Solution Path

 7003

 A

B C D

H F
E

G

K L

K I

M

P

K

R

K S

7
1 5

5

5 1

1 2
3

2
4

1
5

4

3

4

2 4

1

K

Q

U

Y
V

K

5
4

1

2

W

2

O
N

T

5
4

1

Table (3): Comparison among the proposed method and other search strategies
in both time and complexity

Figure (1): Tree Graph Example

Search method Time Space
Depth- first O(bd+1) O(b d)
Best-first O(bd+1) O(bd)
A* O(bd+1) O(bd)
The Proposed method O(bd/2) O(bd)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

