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Abstract 
        Due to inherent limitations of the fixed-point representation, it is sometimes 
desirable to perform arithmetic operations in the floating-point format. Although 
an established standard for floating-point arithmetic exists, optimal hardware 
implementations of algorithms require use of floating-point formats different from 
the ones specified in the standard. Hardware modules for floating-point format 
control, arithmetic operators and conversion to and from any fixed-point format 
are presented. Synthesis results for arithmetic operator modules in several 
floating-point formats, including the IEEE single precision format, Synthesis and 
processing results for both implementations are shown and compared. 

  العملي للدوائر الرقميه قطه الطافيه باستخدام برمجه التوصيفتمثيل الن

الخلاصة
في بعض الأحيان  الضرورةتستدعي بسب محدودات استخدام حسابات النقطة الثابتة  

حسابات النقطة الطافية  بالرغم من وجود هيئه قياسية لتمثيلو. ستخدام حسابات النقطه الطافيهأ
 إلىالضرورة  تستدعي بعض الدوائر  تثيل العملي المثالي للوغاريتماالتمأنجاز عند لكن 

والمتعارف اجدة وتهيئات تمثيل للأرقام الطافية غير تلك الهيئات  القياسية الم استخدام 
, الحسابية  وللمعاملات, بالنقطة الطافية ةللسيطرعملية  موديلاتنجاز مل تم أفي هذا الع. عليها 

 لموديلات المعاملات التحليلنتائج  وفي هذا العمل  .ي تمثيل للنقطة الثابتةوللتحويل من والى أ
نتائج التحليل .   IEEE ات العلمية الدقيقة القياس  متضمناالحسابية لهيئات  قياسية مختلفة 

. ومع المقارنة فيما بينهمافي هذا العمل  متواجدة الانجازين العملي لكلاوالتركيب 

Introduction 
    The hardware modules that 
constitute the parameterized library 
for floating-point arithmetic rely on 
the existence of some basic logic 
functions, such as multiplexers and 
fixed point adders. These basic 
building blocks that perform 
functions commonly encountered in 
logic design all share one 
characteristic - parameterization. All 

of them have parameterized 
functionality, so that they can be used 
to build higher level modules that are 
themselves parameterized. One of the 
most widely implemented formats for 
representing and storing numerical 
values in the  

binary number system is the fixed-
point format. Every numerical value 
is composed of an integer part and a 
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fractional part and the delimitation 
between the two is referred to as the 
radix point. In the fixed-point format, 
the radix point is always implied to 
be in a predetermined position. The 
format thus gets its name from the 
fixed location of the radix point. 
Usually, the radix point is assumed to 
be located immediately to the right of 
the least significant digit, in which 
case only integer values are 
represented. 
 
1-Related Work 
   One of the earliest investigations 
into using FPGAs to implement 
floating-point arithmetic was done by 
Fagin et al. [1], who in 1994 showed 
that implementing IEEE single 
precision operators was possible, but 
also impractical on then current 
FPGA technology. The circuits 
designed by the authors were an 
adder and a multiplier and both had 
full implementation of all four 
rounding modes specified by the 
IEEE 754 standard. This line of 
thought was expanded on by the 
significant work of Shirazi et al. [2] 
who suggested application-specific 
formats for image and DSP 
algorithms in widths of 16 (1-6-9) 
and 18 (1-7-10) bits, as opposed to 
the full 32 (1-8-23) bits in the IEEE 
standard.  Another significant work 
came from Louca et al.[3] in which 
the authors, building on the work of 
Shirazi and others, abstract the 
normalization operation away from 
the actual arithmetic operators, in an 
effort to conserve area. In an effort to 
expand the capabilities of existing 
architectures, Ligon et al. [4] 
presented IEEE single precision adder 
and multiplier circuits on the then 

newly available Xilinx 4000 series 
FPGAs. Both circuits supported 
rounding to nearest, but did not use a 
separate normalizing unit. Similar 
work by Stamoulis et al. [5] presented 
IEEE single precision 
adder/subtractor, multiplier and 
division circuits. Two works by Sahin 
et al. [6] [7] present adder, subtractor, 
multiplier and accumulator circuits, 
but again only in IEEE single 
precision format. Also, rounding 
capability is not implemented. Recent 
work by Dido et al.[8] discusses 
optimization of datapaths, especially 
in image and video processing 
applications. This datapath 
optimization is achieved  
 
by providing flexible floating-point 
formats that are optimal for every 
signal in the datapath. The floating-
point formats in our work are a 
generalized superset of all these 
formats. It includes all the IEEE 
formats as particular instances of 
exponent and mantissa bitwidths, as 
well as the flexible floating-point 
format presented by Dido et al.[8] 
and the two formats by Shirazi et 
al.[2]. Also, we abstract 
normalization as well as rounding 
functionality into a separate unit with 
a choice of rounding to zero and 
rounding to nearest. In this way, as 
Dido et al. [8] explained 
2-Floating-Point Format 
   The floating-point format is the 
most common way of representing 
real numbers in computer systems. 
The floating-point format is similar to 
the scientific notation of numbers, 
such as (-1.35 x 106) there are three 
fields in the representation of a value 
in the floating-point format: sign s, 
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exponent e and fraction ƒ. Thus, 
every floating-point value can be 
defined by  
(-1)s  x 1. ƒ  x  2e - BIAS 
Depending on the bit width of the 
exponent field in the particular format, 
given that the exponent bit width is 
exp_bits, we can represent exponent 
values from -2exp_bit-1 +1 to 2exp_bits-1 -1 
by assigning the value 2exp_bit-1 -1 to 
the bias.  It is worth noting that the 
bias value is not constant and changes 
with exponent bitwidth. The bitwidth 
alignment of the three fields is shown 
in Figure-1. The distinction between 
terms fraction and mantissa is that 
fraction represents only the portion of 
the mantissa to the right of the radix 
point (fractional part). Naturally, a 
tradeoff exists in total bitwidth 
between smaller width requiring less 
hardware resources and higher width 
providing better precision. Also, 
within a certain total bitwidth, it is 
possible to assign various 
combinations of values to the 
exponent and fraction fields ( Figure-
1), wider exponent fields brings 
higher range and wider fraction fields 
brings higher precision[9]. 
2-IEEE Standard and Other 
Formats 
   The Institute of Electrical and 
Electronics Engineers (IEEE) issued 
standard 754 in 1985, specifying 
details of implementing binary 
floating-point arithmetic. This 
standard details four floating-point 
formats - basic and extended each in 
single and double precision bitwidths. 
Most implementations of floating-
point arithmetic adhere to one or 
more of these standard formats, 
though few follow the standard 
absolutely. However, optimal 

implementations of algorithms may 
not always require bitwidths as 
specified by the standard. In fact, it is 
often the case that much smaller 
bitwidths than those specified in the 
754 standard are sufficient to provide 
desired precision and occupy less 
resource than the full standard 
bitwidth implementation [9].  
3- Reconfigurable Hardware 
Field Programmable Gate Array 
(FPGA) 
   Field Programmable Gate Arrays 
(FPGAs) are integrated circuits with a 
flexible architecture, such that their 
structure can be programmed by the 
designer. FPGAs are composed of an 
array of hardware resources called 
configurable logic blocks (CLBs). 
The designer creates the functionality 
of the overall circuit by configuring 
CLBs to perform appropriate logic 
functions. Hence, FPGAs are a form 
of reconfigurable hardware, 
combining flexibility similar to 
software with the speed of specialized 
hardware. Designs mapped to FPGAs 
are usually described in hardware 
description languages, such as VHDL 
or Verilog. In this work, all hardware 
descriptions are written in VHDL. A 
number of software tools exists to aid 
the designer in mapping the high-
level description of the design in 
VHDL to the logic level of each CLB. 
Such tools perform synthesis, 
mapping, placing and routing of the 
design to the hardware [1, 8]. 
4-Arithmetic Operator Hardware 
Modules 
4-1Addition 
   Addition is one of the most 
computationally complex operations 
in floating-point arithmetic. The 
algorithm of the addition operation 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Eng. & Tech. Journal, Vol. 27 , No.16 , 2009         Floating Point Optimization Using VHDL 
 

 

     3026

for floating-point numbers is 
composed of four steps:  
- ensure that the operand with larger 
magnitude is on input 1 (swap),  
-align the mantissas (shift_adjust),  
-add or subtract the mantissas 
(add_sub), and  
-shift the result mantissa right by one 
bit and increment the exponent if 
addition overflow occurred.  
   Each of the four steps of the 
algorithm is implemented in a 
dedicated module, shown above in 
brackets. The four sub-modules are 
assembled into the overall fp_add 
module as shown in Figure- 2. The 
swap submodule compares the 
exponent and mantissa fields of the 
input variables. Based on these two 
comparisons, the two floating-point 
inputs are multiplexed to the outputs. 
If the exponent field of input A is 
larger, or the exponent fields are 
equal and the mantissa of input A is 
larger, input A is multiplexed to 
output large and input B to output 
small. Otherwise, the reverse 
mapping of inputs to outputs occurs. 
   Submodule shift_adjust is 
responsible for aligning the mantissas 
of the larger and smaller operands. It 
achieves this by shifting the smaller 
mantissa to the right as many bits as 
is the difference between the 
exponents. Another function of this 
module is to introduce the guard bit 
into the smaller operand’s mantissa. 
Guard bits are introduced in the 
addition algorithm to provide 
rounding to nearest for the result. 
Hence, the mantissa of the sum is one 
bit wider than the mantissas of the 
inputs. Expansion of the mantissa 
fields happens during aligning of the 
mantissas, so that the extra 

information the guard bit carries can 
be saved when the smaller operand’s 
mantissa is shifted right and some 
least significant bits may be lost. The 
guard bit is introduced into the larger 
operand’s mantissa to the right of the 
least significant bit and always has 
value ’0’. Once the mantissas are 
aligned, it is necessary to either add 
or subtract them, depending on the 
signs of the two operands. If the signs 
are the same, the addition operation is 
constructive and the mantissas are 
added. If the signs are opposite, 
however, the addition operation is 
destructive and the mantissas are 
subtracted. Sub-module add sub will 
perform this variable operation under 
the control of the op input, which is 
fed with the XOR of the input sign 
bits. 
   Outputs of the overall addition 
algorithm are controlled by the 
correction module. If an exception is 
indicated on the input, the exception 
is propagated to the output and the 
result output is set to all zeros. 
Otherwise, if the input values are 
detected to be of the same magnitude, 
but opposite sign, an exception is not 
generated on the output, but the result 
output is still blanked out, to indicate 
zero value, as A + (-A) = 0. Otherwise, 
if an overflow in the addition of the 
mantissas was detected, the result 
mantissa is shifted to the right by one 
bit, truncating the least significant bit, 
and the most significant bit is filled 
with ’1’. Also, the exponent field is 
incremented by 1, to reflect the shift 
in the mantissa. These operations 
correct for the overflow in the 
addition of the mantissas. Finally, the 
floating-point value assembled from 
the sign, exponent and mantissa fields 
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is presented on the output. Module 
fp_add is parameterized by the width 
of the exponent and mantissa fields of 
the floating-point format it operates 
on [6, 7, 10, and 11]. 
4-2Subtraction 
   The subtraction operation is similar 
to the addition operation, as 
A - B = A + (-B) 
Thus, we use a slightly modified 
addition module to perform 
subtraction. This is especially helped 
by the sign-magnitude form of the 
floating-point format. To invert a 
floating-point value, all that needs to 
be done is to invert the sign bit (most 
significant bit, MSB, of the floating-
point signal). 
There is only one, minor structural 
difference between the addition and 
subtraction modules: the inverter on 
the MSB of the second operand is not 
used on the input to the 
parameterized_ comparator module 
(Figure-2), but on the input to the 
swap module. That way, we invert the 
sign of the second operand to achieve 
subtraction. Also, the comparator 
now monitors input values equal in 
both sign and magnitude, since A - A 
= 0. Because the inverter is only 
moved from one location to another, 
module fp sub occupies the exact 
same area as the fp_add module. 
Similarly to the fp_add module, the 
fp_sub module is also parameterized 
by the width of the exponent and 
mantissa fields of the floating-point 
format it operates on [5, 6, 11, and 
12]. 
4-3Multiplication 
   Unlike fixed-point arithmetic, in 
floating-point arithmetic, 
multiplication is a relatively straight-
forward operation compared to 

addition. This is again due to the 
sign-magnitude nature of the floating-
point format, because 
((-1)s1  x  m1 x 2e1)  x  (( -1 )s2  x  m2  
x 2e2 ) = ( -1 )s1 Φs2

  x  (m1 x m2 ) x 
2(e1+e2) 
   From the above, it can be concluded 
that the three fields of the floating-
point format do not interact during 
multiplication and can thus be 
processed at the same time, in parallel. 
The sign of the product is given as the 
exclusive OR (XOR) of the input 
value signs. Mantissa of the product 
is calculated by fixed-point 
multiplication of the input value 
mantissas, while the exponents of the 
input values are added to give the 
exponent of the product. The only 
further complication of the floating-
point multiplication algorithm is the 
fact that the exponent fields are 
biased. When two biased exponent 
fields are added, the result contains 
the bias twice, one of which must be 
subtracted. If, using IEEE standard 
754 notation, E is an unbiased 
exponent and e is a biased exponent, 
it stands that: 
e1 + e2 = (E1 + BIAS) + (E2 + BIAS) 
= (E1 + E2) + 2 x BIAS = Ep + 2 x 
BIAS = eP + BIAS 
   The structure of the floating-point 
multiplier is given in Figure-3. The 
fp_mul module is parameterized by 
the bitwidths of the exponent and 
mantissa fields of the floating-point 
format it processes. The bitwidth of 
the product is 1 + exp_bits + (2 X 
man_bits ) . The mantissa field has 
twice the bitwidth of the input 
mantissas because it is their fixed-
point product [5, 7, 11, and 12]. 
4-4Format Conversion Hardware 
Modules 
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   Custom hardware architectures 
have the ability to perform some 
sections of the algorithm in fixed-
point arithmetic and others in 
floating-point arithmetic, depending 
on the optimal representation of each 
variable in the algorithm. It is the 
goal of our library to provide all the 
hardware modules the designer needs 
to build such hybrid fixed and 
floating-point architectures. Hence, 
some of the most important modules 
are those that convert between fixed 
and floating-point representations of 
variables [7, 11, and 12]. 
4-5Conversion from Fixed-Point To 
Floating-Point 
   Module fix2float was designed to 
convert a given value from fixed to 
floating-point representation. Thus, 
its input is a fixed-point value and its 
output is the corresponding floating-
point representation. Since fixed-
point values can be in the unsigned or 
signed (two’s complement) form, two 
versions of the fix2float module have 
been developed, The structure of the 
unsigned version is shown in Figure-
4, while the structure of the signed 
version is shown in Figure-5. The 
signed version is more complex due 
to handling of the two’s complement 
representations of the input and hence 
has a longer latency of 5 clock cycles, 
as opposed to 4 clock cycles for the 
unsigned version In the conversion 
from signed fixed-point numbers, it 
may be necessary to derive the two’s 
complement of the input signal, while 
in the case of unsigned fixed-point 
numbers, no operation is necessary, 
as only non-negative values can be 
represented. This added operation 
results in the difference in latencies of 
the signed and unsigned module 

versions. The mantissa of the final 
result is produced by shifting left the 
absolute value of the input until its 
MSB is ’1’, while the exponent is 
derived from format constants and the 
number of shifts made to the mantissa. 
For example:  
010010112 = 75 = 010010112 x 20 = 
100101102 x 2-1 = 1.00101102 x 27-1 = 
1.00101102 x 26 = 1.171875 x 64 = 75 
→ƒ = 00101102 → e = 6+BIAS 
   The value of the exponent field 
depends on the normalizing shift of 
the mantissa, shift, the bitwidth of the 
fixed-point input, fix_ bits, and the 
bias value, BIAS. Its final form is 
e = E+ BIAS = ((fix_bits  - 1) – shift) 
+ BIAS = (fix_bit + BIAS – 1) - shift 
   The absolute value of the input is 
fed into a priority encoder, to 
determine the shift value. This 
constitutes the first clock cycle of the 
unsigned architecture and the second 
cycle of the signed one. Once the 
value of the normalizing shift is 
known, the exponent field is 
calculated by performing the 
subtraction (fix_ bits + BIAS - 1) - 
shift. The value of the signal const in 
Figures-4 and-5 is   fix_ bits + BIAS - 
1. Once the value of the normalizing 
shift is known, the mantissa is 
produced by shifting left the absolute 
value of the input and the exponent is 
calculated through subtraction. These 
operations happen in parallel, in the 
second clock cycle of the unsigned 
architecture and third of the signed 
one. After the shifting operation, the 
width of the mantissa field is that of 
the fixed-point input and may need to 
be reduced to the width specified by 
the floating-point format that is to 
appear on the output. 
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   This reduction in bitwidth calls for 
rounding. Rounding to zero or nearest 
are both available through input 
round and happen in clock cycle three 
in the unsigned architecture and four 
in the signed one. The final clock 
cycle of both architectures is 
dedicated to determining the outputs 
of the circuit. The floating-point 
output is either the calculated value or 
all zeros. The latter option is 
multiplexed to the output in case of 
an exception being received at the 
input or encountered during 
processing, or a zero fixed-point input, 
which requires an all-zero floating-
point output. Otherwise, the floating-
point value calculated by the module 
is presented on the output. Both 
versions of the fix2float module are 
parameterized by three values: the 
width of the fixed-point input, the 
width of the exponent field and the 
width of the mantissa field of the 
floating-point output [6, 7, 11, and 
12]. 
4-6Conversion from Floating-Point 
To Fixed-Point 
   Module float2fix implements the 
inverse function to that of the 
fix2float module: conversion from the 
floating-point representation of a 
value to its fixed-point representation. 
As before, two versions of the 
float2fix module exist: one for 
converting to signed and the other to 
unsigned fixed-point representation 
of the input floating-point value. The 
structure of the hardware for 
conversion to the unsigned fixed-
point representation is shown in 
Figure-6, while Figure-7 shows the 
signed version. Due to the added 
complexity of handling two’s 
complement representations of the 

output value, the signed version has a 
latency of 5 clock cycles, while the 
unsigned version has a latency of 4 
clock cycles. The functioning of the 
float2fix module can easily produce 
exceptions because, in general, 
floating-point formats have a wider 
range than fixed-point formats. 
   For instance, all floating-point 
values that have negative exponents 
(magnitude less than 1) cannot be 
represented in integer fixed-point 
formats by values other than 0 or 1. 
Also, all floating-point values that 
exceed the largest representable value 
in the target fixed-point format 
produce an exception. In the unsigned 
version, another exception is caused 
by negative floating-point values 
appearing on the input, which 
instance, all floating-point values that 
have negative exponents (magnitude 
less than 1) cannot be represented in 
integer fixed-point formats by values 
other than 0 or 1. 
   Also, all floating-point values that 
exceed the largest representable value 
in the target fixed-point format 
produce an exception. In the unsigned 
version, another exception is caused 
by negative floating-point values 
appearing on the input, which can by 
definition not be represented in 
unsigned fixed-point format. These 
exceptions are trapped in the first 
clock cycle of both the signed and the 
unsigned architecture. Also in this 
clock cycle, the shift required to 
produce the fixed-point output from 
the mantissa value is calculated using 
the exponent field. This shift is 
simply the unbiased value of the 
exponent. For example: 
1.010112 x 26 = 1.34375 x 64 = 86 = 
10101102 x 20 = 86 
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   The shift required is calculated by 
subtracting the bias value from the 
exponent field of the input. In the 
second clock cycle of both versions 
of the float2fix module, the absolute 
value of the fixed-point 
representation is obtained by shifting 
left the mantissa field of the input. In 
parallel with this, the exception 
signals obtained in the first clock 
cycle are combined into one 
exception signal. Because the fixed-
point format on the output may 
specify a smaller bitwidth than the 
mantissa field of the input floating-
point format, some least significant 
bits of the absolute value of the fixed-
point representation, obtained by 
shifting the mantissa field, may need 
to be truncated. This truncation calls 
for rounding functionality, 
implemented in the third clock cycle 
of both the signed and the unsigned 
architecture. The prepared absolute 
value of the fixed-point 
representation, rounded to the 
required bitwidth, is ready for output 
in the unsigned version, while in the 
signed version, it may need to 
undergo a two’s complement 
operation before being placed on the 
output. It is because of this extra step 
that the signed version of the module 
has the longer latency of 5 clock 
cycles. The two’s complement of the 
absolute value is found by inverting 
all the bits and adding 1. The sign bit 
of the input floating-point value is 
used to select the correct form 
(positive or two’s complement) of the 
fixed-point value, before it is passed 
to the next stage. The final stage of 
both the signed and the unsigned 
architectures is the output stage, 
where the computed fixed-point 

representation is placed on the output, 
unless the input was zero or an 
exception was encountered during 
operation or received at the input, in 
which case the output is set to all 
zeros. Module float2fix is 
parameterized by the bitwidths of the 
exponent and mantissa fields of the 
input floating-point signal, as well as 
the bitwidth of the fixed-point output 
[5, 7, 11, and 12]. 
5-Testing 
   All the hardware modules tested 
both in simulation and in hardware. 
The purpose of the two testing stages 
was to ensure the correct operation of 
the VHDL description of each 
module. A set of input vectors was 
developed for each module to test its 
operation with a range of inputs. 
Parameterization of each module was 
also tested to ensure correct operation 
of the module at various instances in 
the design space. The simulator used 
to test the VHDL descriptions was 
Xilinx ISE 9.2i . Iteration between 
modification of the VHDL 
description and analysis in the 
simulator continued until the correct 
operation of the module was achieved 
for all the test vectors. An example of 
a test vector used to test the IEEE 
single precision adder circuit given 
below. 
41BA3C5716=0100000110111010001
11100010101112=+1.45496642 x24 
=23.27946281 
4349C77616=0100001101001001110
00111011101102=+1.57639956 
x27=201.77914429 
Sum=225.05860710=+1.75827036x27

=01000011011000010000111100000
0012= 43610F0116 
6-Results 
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   The results of synthesis 
experiments conducted on the 
floating-point operator modules 
fp_add, fp_ sub and fp_mul presents, 
the aims of the experiments are to: 
-determine the area of the above 
modules in several floating-point 
formats, 
-examine the relationship between the 
area and total bitwidth of the format, 
and 
-estimate the number of modules that 
can realistically be used on a single 
FPGA. 
The experiments were conducted by 
synthesizing the modules for specific 
floating-point formats Table- 2 shows 
results of the synthesis experiments 
on floating-point operator modules. 
The quantities for the area of each 
instance are expressed in Xilinx 
XCV1000 FPGA. Results for the 
fp_add module in Table-2 also 
represent the fp_sub module, which 
has the same amount of logic. 
Floating-point formats used in the 
experiments were chosen to represent 
the range of realistic floating-point 
formats from 8 to 32 bits in total 
bitwidth and include the IEEE single 
precision format E1 in Table-2. The 
number of operator cores per 
processing element, shown in the two 
rightmost columns, is based on a 
Xilinx XCV1000 FPGA, with a total 
of 12288 slices, with 85% area 
utilization. A realistic design cannot 
utilize all the resources on the FPGA 
because of routing overhead; a 
practical maximum is estimated at 
about 85%. Also included is an 
overhead allowance of approximately 
1200 slices for necessary circuitry 
other than the operators themselves. 

   The results in Table-2 show growth 
in area with increasing total bitwidth, 
for all modules. This growth is 
represented graphically in Figure-8. 
7-Conclusions 
   The library of parameterized 
hardware modules for floating point 
arithmetic has been created and 
modules for format control, 
arithmetic operators and conversion 
to and from any fixed point format. 
All the modules are parameterized to 
operate on any floating point format, 
with rounding to zero or nearest. 
Limited exception handling is 
implemented in all the modules, with 
the ability to propagate an error. 
Ready and done synchronization 
signals are provided in all modules. 
The library can be used to implement 
finely tuned datapaths, in both fixed 
and floating point arithmetic, to the 
exact bitwidths, ranges and precisions 
required by the signals in the 
algorithm. Also, library modules for 
format conversion enable creation of 
hybrid fixed and floating point design. 
   Synthesis results indicate design on 
a Xilinx  XCV1000 FPGA may 
include up to 31 addition or 13 
multiplication operators, complete 
with demoralizing, rounding and 
normalizing functionality each, for 
the IEEE single precision format. 
Similarly, a useful custom floating 
point format, with 5 exponent and 6 
mantissa bits for example, may 
provide the designer with up to 113 
addition or 85 multiplication modules, 
all also complete with full format 
handling functionalities, on the same 
FPGA 
8-Future Work 
   Many of the approaches used by the 
synthesis framework presented in this 
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work make use of simple methods 
and algorithms. However, this first 
version of the synthesis framework is 
dedicated to present the basic 
methodology for a new conceptual 
synthesis methodology. 
Optimizations of these methods are 
possible but have been left for future 
work.  
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Table (1)  
 

operand 1 Operand 2 Sum 
41BA3C57 4349C776 43610F01 

 
 
 
 

Table (2) Operator synthesis results 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Format 
         total 

Bitwidth 
 exponent     fraction 

Area 
fp_add   fp_mul 

       Per IC 
fp_add   fp_mul 

A0 8 2 5 39 46 236 200 
A1 8 3 4 39 51 236 180 
A2 8 4 3 32 36 288 256 
B0 12 3 8 84 127 109 72 
B1 12 4 7 80 140 115 65 
B2 12 5 6 81 108 113 85 
C0 16 4 11 121 208 76 44 
C1 16 5 10 141 178 65 51 
C2 16 6 9 113 150 81 61 
D0 24 6 17 221 421 41 21 
D1 24 8 15 216 431 42 21 
D2 24 10 13 217 275 42 33 
E0 32 5 26 328 766 28 12 
E1 32 8 23 291 674 31 13 
E2 32 11 20 284 536 32 17 
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Figure (1) Alignment of fields in a floating-point format 

 

 
Figure (2) Floating-point addition 
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Figure (3) Floating-point multiplication 
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Figure (4) Conversion from unsigned fixed-point to floating-point representation 
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Figure (5) Conversion from signed fixed-point to floating-point representation 
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Figure (6) Conversion from floating-point to unsigned fixed-point representation 
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Figure (7) Conversion from floating-point to signed fixed-point representation 

 
Figure  (8) Growth of area with increasing bitwidth 
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VHDL Entities 
Module: 
parameterized_adder 
Entity: 
entity parameterized_adder is  
generic 
bits : integer := 0 
); 
port 
( 
--inputs 
A : in std_logic_vector(bits-1 downto 0); 
B : in std_logic_vector(bits-1 downto 0); 
CIN : in std_logic; 
--outputs 
S : out std_logic_vector(bits-1 downto 0) := (others=>'0'); 
COUT : out std_logic := '0' 
); 
end parameterized_adder; 
Module: 
parameterized_subtractor 
Entity: 
entity parameterized_subtractor is 
generic 
( 
bits : integer := 0 
); 
port 
( 
--inputs 
A : in std_logic_vector(bits-1 downto 0); 
B : in std_logic_vector(bits-1 downto 0); 
--outputs 
O : out std_logic_vector(bits-1 downto 0) := (others=>'0') 
); 
end parameterized_subtractor; 
Module: 
parameterized_multiplier 
Entity: 
entity parameterized_multiplier is 
generic 
( 
bits : integer := 0 
); 
port 
( 
--inputs 
A : in std_logic_vector(bits-1 downto 0); 
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B : in std_logic_vector(bits-1 downto 0); 
--outputs 
S : out std_logic_vector((2*bits)-1 downto 0) := (others=>'0') 
); 
end parameterized_multiplier; 
Module: 
parameterized_variable_shifter 
Entity: 
entity parameterized_variable_shifter is 
generic 
( 
bits : integer := 0; 
select_bits : integer := 0; 
direction : std_logic := '0' --0=right,1=left 
); 
port 
( 
--inputs 
I : in std_logic_vector(bits-1 downto 0); 
S : in std_logic_vector(select_bits-1 downto 0); 
CLEAR : in std_logic; 
--outputs 
O : out std_logic_vector(bits-1 downto 0) 
); 
end parameterized_variable_shifter; 
Module: 
delay_block 
Entity: 
entity delay_block is 
generic 
( 
bits : integer := 0; 
delay : integer := 0 
); 
port 
( 
--inputs 
A : in std_logic_vector(bits-1 downto 0); 
CLK : in std_logic; 
--outputs 
A_DELAYED : out std_logic_vector(bits-1 downto 0) := (others=>'0') 
); 
end delay_block; 
Module: 
parameterized_absolute_value 
Entity: 
entity parameterized_absolute_value is 
generic 
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( 
bits : integer := 0 
); 
port 
( 
--inputs 
IN1 : in std_logic_vector(bits-1 downto 0); 
--outputs 
EXC : out std_logic := '0'; 
OUT1 : out std_logic_vector(bits-1 downto 0) := (others=>'0') 
); 
end parameterized_absolute_value; 
Module: 
parameterized_priority_encoder 
Entity: 
entity parameterized_priority_encoder is 
generic 
( 
man_bits : integer := 0; 
shift_bits : integer := 0 
); 
port 
( 
--inputs 
MAN_IN : in std_logic_vector(man_bits-1 downto 0); 
--outputs 
SHIFT : out std_logic_vector(shift_bits-1 downto 0) := (others=>'0'); 
EXCEPTION_OUT : out std_logic := '0' 
); 
end parameterized_priority_encoder; 
Module: 
parameterized_mux 
Entity: 
entity parameterized_mux is 
generic 
( 
bits : integer := 0 
); 
port 
( 
--inputs 
A : in std_logic_vector(bits-1 downto 0); 
B : in std_logic_vector(bits-1 downto 0); 
S : in std_logic; 
--outputs 
O : out std_logic_vector(bits-1 downto 0) := (others=>'0') 
); 
end parameterized_mux; 
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Module: 
parameterized_comparator 
Entity: 
entity parameterized_comparator is 
generic 
( 
bits : integer := 0 
); 
Port 
( 
--inputs 
A : in std_logic_vector(bits-1 downto 0); 
B : in std_logic_vector(bits-1 downto 0); 
--outputs 
A_GT_B : out std_logic := '0'; 
A_EQ_B : out std_logic := '0'; 
A_LT_B : out std_logic := '0' 
); 
end parameterized_comparator; 
Module: 
denorm 
Entity: 
entity denorm is 
generic 
( 
exp_bits : integer := 0; 
man_bits : integer := 0 
); 
port 
( 
--inputs 
IN1 : in std_logic_vector(exp_bits+man_bits downto 0); 
READY : in std_logic; 
EXCEPTION_IN : in std_logic; 
--outputs 
OUT1 : out std_logic_vector(exp_bits+man_bits+1 downto 0) := (others=>'0'); 
DONE : out std_logic := '0'; 
EXCEPTION_OUT : out std_logic := '0' 
); 
end denorm; 
Module: 
rnd_norm 
Entity: 
entity rnd_norm is 
generic 
( 
exp_bits : integer := 0; 
man_bits_in : integer := 0; 
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man_bits_out : integer := 0 
); 
port 
( 
--inputs 
IN1 : in std_logic_vector((exp_bits+man_bits_in) downto 0); 
READY : in std_logic; 
CLK : in std_logic; 
ROUND : in std_logic; 
EXCEPTION_IN : in std_logic; 
--outputs 
OUT1 : out std_logic_vector((exp_bits+man_bits_out) downto 0) := (others=>'0'); 
DONE : out std_logic := '0'; 
EXCEPTION_OUT : out std_logic := '0' 
); 
end rnd_norm; 
Module: 
fp_add 
Entity: 
entity fp_add is 
generic 
( 
exp_bits : integer := 0; 
man_bits : integer := 0 
); 
port 
( 
--inputs 
OP1 : in std_logic_vector(man_bits+exp_bits downto 0); 
OP2 : in std_logic_vector(man_bits+exp_bits downto 0); 
READY : in std_logic; 
EXCEPTION_IN : in std_logic; 
CLK : in std_logic; 
--outputs 
RESULT : out std_logic_vector(man_bits+exp_bits+1 downto 0) := (others=>'0'); 
EXCEPTION_OUT : out std_logic := '0'; 
DONE : out std_logic := '0' 
); 
end fp_add; 
Module: 
fp_sub 
Entity: 
entity fp_sub is 
generic 
( 
exp_bits : integer := 0; 
man_bits : integer := 0 
); 
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port 
( 
--inputs 
OP1 : in std_logic_vector(man_bits+exp_bits downto 0); 
OP2 : in std_logic_vector(man_bits+exp_bits downto 0); 
READY : in std_logic; 
EXCEPTION_IN : in std_logic; 
CLK : in std_logic; 
--outputs 
RESULT : out std_logic_vector(man_bits+exp_bits+1 downto 0) := (others=>'0'); 
EXCEPTION_OUT : out std_logic := '0'; 
DONE : out std_logic := '0' 
); 
end fp_sub; 
Module: 
fp_mul 
Entity: 
entity fp_mul is 
generic 
( 
exp_bits : integer := 0; 
man_bits : integer := 0 
); 
port 
( 
--inputs 
OP1 : in std_logic_vector(exp_bits+man_bits downto 0); 
OP2 : in std_logic_vector(exp_bits+man_bits downto 0); 
READY : in std_logic; 
EXCEPTION_IN : in std_logic; 
CLK : in std_logic; 
--outputs 
RESULT : out std_logic_vector(exp_bits+(2*man_bits) downto 0) := (others=>'0'); 
EXCEPTION_OUT : out std_logic := '0'; 
DONE : out std_logic := '0' 
); 
end entity; 
Module: 
fix2float 
Entity: 
entity fix2float is 
generic 
( 
fix_bits : integer := 0; 
exp_bits : integer := 0; 
man_bits : integer := 0 
); 
port 
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( 
--inputs 
FIXED : in std_logic_vector(fix_bits-1 downto 0); 
ROUND : in std_logic; 
EXCEPTION_IN : in std_logic; 
CLK : in std_logic; 
READY : in std_logic; 
--outputs 
FLOAT : out std_logic_vector(exp_bits+man_bits downto 0) := (others=>'0'); 
EXCEPTION_OUT : out std_logic := '0'; 
DONE : out std_logic := '0' 
); 
end fix2float; 
Module: 
float2fix 
Entity: 
entity float2fix is 
generic 
( 
fix_bits : integer := 0; 
exp_bits : integer := 0; 
man_bits : integer := 0 
); 
port 
( 
--inputs 
FLOAT : in std_logic_vector(exp_bits+man_bits downto 0); 
ROUND : in std_logic; 
EXCEPTION_IN : in std_logic; 
CLK : in std_logic; 
READY : in std_logic; 
--outputs 
FIXED : out std_logic_vector(fix_bits-1 downto 0) := (others=>'0'); 
EXCEPTION_OUT : out std_logic := '0'; 
DONE : out std_logic := '0' 
); 
end float2fix; 
VHDL Description of the IEEE Single Precision Adder 
--======================================================-- 
-- LIBRARIES -- 
--======================================================-- 
-- IEEE Libraries -- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all; 
-- float 
library PEX_Lib; 
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use PEX_Lib.float_pkg.all; 
---------------------------------------------------------- 
-- IEEE Single Precision Adder -- 
---------------------------------------------------------- 
entity single_precision_adder is 
port 
( 
--inputs 
IN1 : in std_logic_vector(31 downto 0); 
IN2 : in std_logic_vector(31 downto 0); 
READY : in std_logic; 
EXCEPTION_IN : in std_logic; 
ROUND : in std_logic; 
CLK : in std_logic; 
--outputs 
OUT1 : out std_logic_vector(31 downto 0) := (others=>'0'); 
EXCEPTION_OUT : out std_logic := '0'; 
DONE : out std_logic := '0' 
); 
end single_precision_adder; 
---------------------------------------------------------- 
-- IEEE Single Precision Adder -- 
---------------------------------------------------------- 
architecture single_precision_adder_arch of single_precision_adder is 
signal rd1 : std_logic := '0'; 
signal rd2 : std_logic := '0'; 
signal rd3 : std_logic := '0'; 
signal rd4 : std_logic := '0'; 
signal exc1 : std_logic := '0'; 
signal exc2 : std_logic := '0'; 
signal exc3 : std_logic := '0'; 
signal exc4 : std_logic := '0'; 
signal rnd1 : std_logic := '0'; 
signal rnd2 : std_logic := '0'; 
signal rnd3 : std_logic := '0'; 
signal rnd4 : std_logic := '0'; 
signal op1 : std_logic_vector(32 downto 0) := (others=>'0'); 
signal op2 : std_logic_vector(32 downto 0) := (others=>'0'); 
signal sum : std_logic_vector(33 downto 0) := (others=>'0'); 
begin 
--instances of components 
denorm1: denorm 
generic map 
( 
exp_bits => 8, 
man_bits => 23 
) 
port map 
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( 
--inputs 
IN1 => IN1, 
READY => READY, 
EXCEPTION_IN => EXCEPTION_IN, 
--outputs 
OUT1 => op1, 
DONE => rd1, 
EXCEPTION_OUT => exc1 
); 
denorm2: denorm 
generic map 
( 
exp_bits => 8, 
man_bits => 23 
) 
port map 
( 
--inputs 
IN1 => IN2, 
READY => READY, 
EXCEPTION_IN => EXCEPTION_IN, 
--outputs 
OUT1 => op2, 
DONE => rd2, 
EXCEPTION_OUT => exc2 
); 
adder: fp_add 
generic map 
( 
exp_bits => 8, 
man_bits => 24 
) 
port map 
( 
--inputs 
OP1 => op1, 
OP2 => op2, 
READY => rd3, 
EXCEPTION_IN => exc3, 
CLK => CLK, 
--outputs 
RESULT => sum, 
EXCEPTION_OUT => exc4, 
DONE => rd4 
); 
rnd_norm1: rnd_norm 
generic map 
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( 
exp_bits => 8, 
man_bits_in => 25, 
man_bits_out => 23 
) 
port map 
( 
--inputs 
IN1 => sum, 
READY => rd4, 
CLK => CLK, 
ROUND => rnd4, 
EXCEPTION_IN => exc4, 
--outputs 
OUT1 => OUT1, 
DONE => DONE, 
EXCEPTION_OUT => EXCEPTION_OUT 
); 
rd3 <= rd1 AND rd2; 
exc3 <= exc1 OR exc2; 
main: process (CLK) 
begin 
if(rising_edge(CLK)) then 
rnd4 <= rnd3; 
rnd3 <= rnd2; 
rnd2 <= rnd1; 
rnd1 <= ROUND; 
end if;--CLK 
end process;--main 
end single_precision_adder_arch;--end of architecture 
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