
, 2009.16 , No27 Eng. & Technology, Vol.

/ Baghdadechnology*Electrical and Electronic Engineering Department, University of T

3023

Floating Point Optimization Using VHDL

Dr. Manal Hammadi Jassim*

Received on: 29/3/2009
Accepted on: 2/7/2009

Abstract
 Due to inherent limitations of the fixed-point representation, it is sometimes
desirable to perform arithmetic operations in the floating-point format. Although
an established standard for floating-point arithmetic exists, optimal hardware
implementations of algorithms require use of floating-point formats different from
the ones specified in the standard. Hardware modules for floating-point format
control, arithmetic operators and conversion to and from any fixed-point format
are presented. Synthesis results for arithmetic operator modules in several
floating-point formats, including the IEEE single precision format, Synthesis and
processing results for both implementations are shown and compared.

 العملي للدوائر الرقميه قطه الطافيه باستخدام برمجه التوصيفتمثيل الن

الخلاصة
في بعض الأحيان الضرورةتستدعي بسب محدودات استخدام حسابات النقطة الثابتة

حسابات النقطة الطافية بالرغم من وجود هيئه قياسية لتمثيلو. ستخدام حسابات النقطه الطافيهأ
 إلىالضرورة تستدعي بعض الدوائر تثيل العملي المثالي للوغاريتماالتمأنجاز عند لكن

والمتعارف اجدة وتهيئات تمثيل للأرقام الطافية غير تلك الهيئات القياسية الم استخدام
, الحسابية وللمعاملات, بالنقطة الطافية ةللسيطرعملية موديلاتنجاز مل تم أفي هذا الع. عليها

 لموديلات المعاملات التحليلنتائج وفي هذا العمل .ي تمثيل للنقطة الثابتةوللتحويل من والى أ
نتائج التحليل . IEEE ات العلمية الدقيقة القياس متضمناالحسابية لهيئات قياسية مختلفة

. ومع المقارنة فيما بينهمافي هذا العمل متواجدة الانجازين العملي لكلاوالتركيب

Introduction
 The hardware modules that
constitute the parameterized library
for floating-point arithmetic rely on
the existence of some basic logic
functions, such as multiplexers and
fixed point adders. These basic
building blocks that perform
functions commonly encountered in
logic design all share one
characteristic - parameterization. All

of them have parameterized
functionality, so that they can be used
to build higher level modules that are
themselves parameterized. One of the
most widely implemented formats for
representing and storing numerical
values in the

binary number system is the fixed-
point format. Every numerical value
is composed of an integer part and a

https://doi.org/10.30684/etj.27.16.11
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4

http://www.pdffactory.com
http://www.pdffactory.com
https://doi.org/10.30684/etj.27.16.11

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3024

fractional part and the delimitation
between the two is referred to as the
radix point. In the fixed-point format,
the radix point is always implied to
be in a predetermined position. The
format thus gets its name from the
fixed location of the radix point.
Usually, the radix point is assumed to
be located immediately to the right of
the least significant digit, in which
case only integer values are
represented.

1-Related Work
 One of the earliest investigations
into using FPGAs to implement
floating-point arithmetic was done by
Fagin et al. [1], who in 1994 showed
that implementing IEEE single
precision operators was possible, but
also impractical on then current
FPGA technology. The circuits
designed by the authors were an
adder and a multiplier and both had
full implementation of all four
rounding modes specified by the
IEEE 754 standard. This line of
thought was expanded on by the
significant work of Shirazi et al. [2]
who suggested application-specific
formats for image and DSP
algorithms in widths of 16 (1-6-9)
and 18 (1-7-10) bits, as opposed to
the full 32 (1-8-23) bits in the IEEE
standard. Another significant work
came from Louca et al.[3] in which
the authors, building on the work of
Shirazi and others, abstract the
normalization operation away from
the actual arithmetic operators, in an
effort to conserve area. In an effort to
expand the capabilities of existing
architectures, Ligon et al. [4]
presented IEEE single precision adder
and multiplier circuits on the then

newly available Xilinx 4000 series
FPGAs. Both circuits supported
rounding to nearest, but did not use a
separate normalizing unit. Similar
work by Stamoulis et al. [5] presented
IEEE single precision
adder/subtractor, multiplier and
division circuits. Two works by Sahin
et al. [6] [7] present adder, subtractor,
multiplier and accumulator circuits,
but again only in IEEE single
precision format. Also, rounding
capability is not implemented. Recent
work by Dido et al.[8] discusses
optimization of datapaths, especially
in image and video processing
applications. This datapath
optimization is achieved

by providing flexible floating-point
formats that are optimal for every
signal in the datapath. The floating-
point formats in our work are a
generalized superset of all these
formats. It includes all the IEEE
formats as particular instances of
exponent and mantissa bitwidths, as
well as the flexible floating-point
format presented by Dido et al.[8]
and the two formats by Shirazi et
al.[2]. Also, we abstract
normalization as well as rounding
functionality into a separate unit with
a choice of rounding to zero and
rounding to nearest. In this way, as
Dido et al. [8] explained
2-Floating-Point Format
 The floating-point format is the
most common way of representing
real numbers in computer systems.
The floating-point format is similar to
the scientific notation of numbers,
such as (-1.35 x 106) there are three
fields in the representation of a value
in the floating-point format: sign s,

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3025

exponent e and fraction ƒ. Thus,
every floating-point value can be
defined by
(-1)s x 1. ƒ x 2e - BIAS
Depending on the bit width of the
exponent field in the particular format,
given that the exponent bit width is
exp_bits, we can represent exponent
values from -2exp_bit-1 +1 to 2exp_bits-1 -1
by assigning the value 2exp_bit-1 -1 to
the bias. It is worth noting that the
bias value is not constant and changes
with exponent bitwidth. The bitwidth
alignment of the three fields is shown
in Figure-1. The distinction between
terms fraction and mantissa is that
fraction represents only the portion of
the mantissa to the right of the radix
point (fractional part). Naturally, a
tradeoff exists in total bitwidth
between smaller width requiring less
hardware resources and higher width
providing better precision. Also,
within a certain total bitwidth, it is
possible to assign various
combinations of values to the
exponent and fraction fields (Figure-
1), wider exponent fields brings
higher range and wider fraction fields
brings higher precision[9].
2-IEEE Standard and Other
Formats
 The Institute of Electrical and
Electronics Engineers (IEEE) issued
standard 754 in 1985, specifying
details of implementing binary
floating-point arithmetic. This
standard details four floating-point
formats - basic and extended each in
single and double precision bitwidths.
Most implementations of floating-
point arithmetic adhere to one or
more of these standard formats,
though few follow the standard
absolutely. However, optimal

implementations of algorithms may
not always require bitwidths as
specified by the standard. In fact, it is
often the case that much smaller
bitwidths than those specified in the
754 standard are sufficient to provide
desired precision and occupy less
resource than the full standard
bitwidth implementation [9].
3- Reconfigurable Hardware
Field Programmable Gate Array
(FPGA)
 Field Programmable Gate Arrays
(FPGAs) are integrated circuits with a
flexible architecture, such that their
structure can be programmed by the
designer. FPGAs are composed of an
array of hardware resources called
configurable logic blocks (CLBs).
The designer creates the functionality
of the overall circuit by configuring
CLBs to perform appropriate logic
functions. Hence, FPGAs are a form
of reconfigurable hardware,
combining flexibility similar to
software with the speed of specialized
hardware. Designs mapped to FPGAs
are usually described in hardware
description languages, such as VHDL
or Verilog. In this work, all hardware
descriptions are written in VHDL. A
number of software tools exists to aid
the designer in mapping the high-
level description of the design in
VHDL to the logic level of each CLB.
Such tools perform synthesis,
mapping, placing and routing of the
design to the hardware [1, 8].
4-Arithmetic Operator Hardware
Modules
4-1Addition
 Addition is one of the most
computationally complex operations
in floating-point arithmetic. The
algorithm of the addition operation

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3026

for floating-point numbers is
composed of four steps:
- ensure that the operand with larger
magnitude is on input 1 (swap),
-align the mantissas (shift_adjust),
-add or subtract the mantissas
(add_sub), and
-shift the result mantissa right by one
bit and increment the exponent if
addition overflow occurred.
 Each of the four steps of the
algorithm is implemented in a
dedicated module, shown above in
brackets. The four sub-modules are
assembled into the overall fp_add
module as shown in Figure- 2. The
swap submodule compares the
exponent and mantissa fields of the
input variables. Based on these two
comparisons, the two floating-point
inputs are multiplexed to the outputs.
If the exponent field of input A is
larger, or the exponent fields are
equal and the mantissa of input A is
larger, input A is multiplexed to
output large and input B to output
small. Otherwise, the reverse
mapping of inputs to outputs occurs.
 Submodule shift_adjust is
responsible for aligning the mantissas
of the larger and smaller operands. It
achieves this by shifting the smaller
mantissa to the right as many bits as
is the difference between the
exponents. Another function of this
module is to introduce the guard bit
into the smaller operand’s mantissa.
Guard bits are introduced in the
addition algorithm to provide
rounding to nearest for the result.
Hence, the mantissa of the sum is one
bit wider than the mantissas of the
inputs. Expansion of the mantissa
fields happens during aligning of the
mantissas, so that the extra

information the guard bit carries can
be saved when the smaller operand’s
mantissa is shifted right and some
least significant bits may be lost. The
guard bit is introduced into the larger
operand’s mantissa to the right of the
least significant bit and always has
value ’0’. Once the mantissas are
aligned, it is necessary to either add
or subtract them, depending on the
signs of the two operands. If the signs
are the same, the addition operation is
constructive and the mantissas are
added. If the signs are opposite,
however, the addition operation is
destructive and the mantissas are
subtracted. Sub-module add sub will
perform this variable operation under
the control of the op input, which is
fed with the XOR of the input sign
bits.
 Outputs of the overall addition
algorithm are controlled by the
correction module. If an exception is
indicated on the input, the exception
is propagated to the output and the
result output is set to all zeros.
Otherwise, if the input values are
detected to be of the same magnitude,
but opposite sign, an exception is not
generated on the output, but the result
output is still blanked out, to indicate
zero value, as A + (-A) = 0. Otherwise,
if an overflow in the addition of the
mantissas was detected, the result
mantissa is shifted to the right by one
bit, truncating the least significant bit,
and the most significant bit is filled
with ’1’. Also, the exponent field is
incremented by 1, to reflect the shift
in the mantissa. These operations
correct for the overflow in the
addition of the mantissas. Finally, the
floating-point value assembled from
the sign, exponent and mantissa fields

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3027

is presented on the output. Module
fp_add is parameterized by the width
of the exponent and mantissa fields of
the floating-point format it operates
on [6, 7, 10, and 11].
4-2Subtraction
 The subtraction operation is similar
to the addition operation, as
A - B = A + (-B)
Thus, we use a slightly modified
addition module to perform
subtraction. This is especially helped
by the sign-magnitude form of the
floating-point format. To invert a
floating-point value, all that needs to
be done is to invert the sign bit (most
significant bit, MSB, of the floating-
point signal).
There is only one, minor structural
difference between the addition and
subtraction modules: the inverter on
the MSB of the second operand is not
used on the input to the
parameterized_ comparator module
(Figure-2), but on the input to the
swap module. That way, we invert the
sign of the second operand to achieve
subtraction. Also, the comparator
now monitors input values equal in
both sign and magnitude, since A - A
= 0. Because the inverter is only
moved from one location to another,
module fp sub occupies the exact
same area as the fp_add module.
Similarly to the fp_add module, the
fp_sub module is also parameterized
by the width of the exponent and
mantissa fields of the floating-point
format it operates on [5, 6, 11, and
12].
4-3Multiplication
 Unlike fixed-point arithmetic, in
floating-point arithmetic,
multiplication is a relatively straight-
forward operation compared to

addition. This is again due to the
sign-magnitude nature of the floating-
point format, because
((-1)s1 x m1 x 2e1) x ((-1)s2 x m2
x 2e2) = (-1)s1 Φs2

 x (m1 x m2) x
2(e1+e2)
 From the above, it can be concluded
that the three fields of the floating-
point format do not interact during
multiplication and can thus be
processed at the same time, in parallel.
The sign of the product is given as the
exclusive OR (XOR) of the input
value signs. Mantissa of the product
is calculated by fixed-point
multiplication of the input value
mantissas, while the exponents of the
input values are added to give the
exponent of the product. The only
further complication of the floating-
point multiplication algorithm is the
fact that the exponent fields are
biased. When two biased exponent
fields are added, the result contains
the bias twice, one of which must be
subtracted. If, using IEEE standard
754 notation, E is an unbiased
exponent and e is a biased exponent,
it stands that:
e1 + e2 = (E1 + BIAS) + (E2 + BIAS)
= (E1 + E2) + 2 x BIAS = Ep + 2 x
BIAS = eP + BIAS
 The structure of the floating-point
multiplier is given in Figure-3. The
fp_mul module is parameterized by
the bitwidths of the exponent and
mantissa fields of the floating-point
format it processes. The bitwidth of
the product is 1 + exp_bits + (2 X
man_bits) . The mantissa field has
twice the bitwidth of the input
mantissas because it is their fixed-
point product [5, 7, 11, and 12].
4-4Format Conversion Hardware
Modules

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3028

 Custom hardware architectures
have the ability to perform some
sections of the algorithm in fixed-
point arithmetic and others in
floating-point arithmetic, depending
on the optimal representation of each
variable in the algorithm. It is the
goal of our library to provide all the
hardware modules the designer needs
to build such hybrid fixed and
floating-point architectures. Hence,
some of the most important modules
are those that convert between fixed
and floating-point representations of
variables [7, 11, and 12].
4-5Conversion from Fixed-Point To
Floating-Point
 Module fix2float was designed to
convert a given value from fixed to
floating-point representation. Thus,
its input is a fixed-point value and its
output is the corresponding floating-
point representation. Since fixed-
point values can be in the unsigned or
signed (two’s complement) form, two
versions of the fix2float module have
been developed, The structure of the
unsigned version is shown in Figure-
4, while the structure of the signed
version is shown in Figure-5. The
signed version is more complex due
to handling of the two’s complement
representations of the input and hence
has a longer latency of 5 clock cycles,
as opposed to 4 clock cycles for the
unsigned version In the conversion
from signed fixed-point numbers, it
may be necessary to derive the two’s
complement of the input signal, while
in the case of unsigned fixed-point
numbers, no operation is necessary,
as only non-negative values can be
represented. This added operation
results in the difference in latencies of
the signed and unsigned module

versions. The mantissa of the final
result is produced by shifting left the
absolute value of the input until its
MSB is ’1’, while the exponent is
derived from format constants and the
number of shifts made to the mantissa.
For example:
010010112 = 75 = 010010112 x 20 =
100101102 x 2-1 = 1.00101102 x 27-1 =
1.00101102 x 26 = 1.171875 x 64 = 75
→ƒ = 00101102 → e = 6+BIAS
 The value of the exponent field
depends on the normalizing shift of
the mantissa, shift, the bitwidth of the
fixed-point input, fix_ bits, and the
bias value, BIAS. Its final form is
e = E+ BIAS = ((fix_bits - 1) – shift)
+ BIAS = (fix_bit + BIAS – 1) - shift
 The absolute value of the input is
fed into a priority encoder, to
determine the shift value. This
constitutes the first clock cycle of the
unsigned architecture and the second
cycle of the signed one. Once the
value of the normalizing shift is
known, the exponent field is
calculated by performing the
subtraction (fix_ bits + BIAS - 1) -
shift. The value of the signal const in
Figures-4 and-5 is fix_ bits + BIAS -
1. Once the value of the normalizing
shift is known, the mantissa is
produced by shifting left the absolute
value of the input and the exponent is
calculated through subtraction. These
operations happen in parallel, in the
second clock cycle of the unsigned
architecture and third of the signed
one. After the shifting operation, the
width of the mantissa field is that of
the fixed-point input and may need to
be reduced to the width specified by
the floating-point format that is to
appear on the output.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3029

 This reduction in bitwidth calls for
rounding. Rounding to zero or nearest
are both available through input
round and happen in clock cycle three
in the unsigned architecture and four
in the signed one. The final clock
cycle of both architectures is
dedicated to determining the outputs
of the circuit. The floating-point
output is either the calculated value or
all zeros. The latter option is
multiplexed to the output in case of
an exception being received at the
input or encountered during
processing, or a zero fixed-point input,
which requires an all-zero floating-
point output. Otherwise, the floating-
point value calculated by the module
is presented on the output. Both
versions of the fix2float module are
parameterized by three values: the
width of the fixed-point input, the
width of the exponent field and the
width of the mantissa field of the
floating-point output [6, 7, 11, and
12].
4-6Conversion from Floating-Point
To Fixed-Point
 Module float2fix implements the
inverse function to that of the
fix2float module: conversion from the
floating-point representation of a
value to its fixed-point representation.
As before, two versions of the
float2fix module exist: one for
converting to signed and the other to
unsigned fixed-point representation
of the input floating-point value. The
structure of the hardware for
conversion to the unsigned fixed-
point representation is shown in
Figure-6, while Figure-7 shows the
signed version. Due to the added
complexity of handling two’s
complement representations of the

output value, the signed version has a
latency of 5 clock cycles, while the
unsigned version has a latency of 4
clock cycles. The functioning of the
float2fix module can easily produce
exceptions because, in general,
floating-point formats have a wider
range than fixed-point formats.
 For instance, all floating-point
values that have negative exponents
(magnitude less than 1) cannot be
represented in integer fixed-point
formats by values other than 0 or 1.
Also, all floating-point values that
exceed the largest representable value
in the target fixed-point format
produce an exception. In the unsigned
version, another exception is caused
by negative floating-point values
appearing on the input, which
instance, all floating-point values that
have negative exponents (magnitude
less than 1) cannot be represented in
integer fixed-point formats by values
other than 0 or 1.
 Also, all floating-point values that
exceed the largest representable value
in the target fixed-point format
produce an exception. In the unsigned
version, another exception is caused
by negative floating-point values
appearing on the input, which can by
definition not be represented in
unsigned fixed-point format. These
exceptions are trapped in the first
clock cycle of both the signed and the
unsigned architecture. Also in this
clock cycle, the shift required to
produce the fixed-point output from
the mantissa value is calculated using
the exponent field. This shift is
simply the unbiased value of the
exponent. For example:
1.010112 x 26 = 1.34375 x 64 = 86 =
10101102 x 20 = 86

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3030

 The shift required is calculated by
subtracting the bias value from the
exponent field of the input. In the
second clock cycle of both versions
of the float2fix module, the absolute
value of the fixed-point
representation is obtained by shifting
left the mantissa field of the input. In
parallel with this, the exception
signals obtained in the first clock
cycle are combined into one
exception signal. Because the fixed-
point format on the output may
specify a smaller bitwidth than the
mantissa field of the input floating-
point format, some least significant
bits of the absolute value of the fixed-
point representation, obtained by
shifting the mantissa field, may need
to be truncated. This truncation calls
for rounding functionality,
implemented in the third clock cycle
of both the signed and the unsigned
architecture. The prepared absolute
value of the fixed-point
representation, rounded to the
required bitwidth, is ready for output
in the unsigned version, while in the
signed version, it may need to
undergo a two’s complement
operation before being placed on the
output. It is because of this extra step
that the signed version of the module
has the longer latency of 5 clock
cycles. The two’s complement of the
absolute value is found by inverting
all the bits and adding 1. The sign bit
of the input floating-point value is
used to select the correct form
(positive or two’s complement) of the
fixed-point value, before it is passed
to the next stage. The final stage of
both the signed and the unsigned
architectures is the output stage,
where the computed fixed-point

representation is placed on the output,
unless the input was zero or an
exception was encountered during
operation or received at the input, in
which case the output is set to all
zeros. Module float2fix is
parameterized by the bitwidths of the
exponent and mantissa fields of the
input floating-point signal, as well as
the bitwidth of the fixed-point output
[5, 7, 11, and 12].
5-Testing
 All the hardware modules tested
both in simulation and in hardware.
The purpose of the two testing stages
was to ensure the correct operation of
the VHDL description of each
module. A set of input vectors was
developed for each module to test its
operation with a range of inputs.
Parameterization of each module was
also tested to ensure correct operation
of the module at various instances in
the design space. The simulator used
to test the VHDL descriptions was
Xilinx ISE 9.2i . Iteration between
modification of the VHDL
description and analysis in the
simulator continued until the correct
operation of the module was achieved
for all the test vectors. An example of
a test vector used to test the IEEE
single precision adder circuit given
below.
41BA3C5716=0100000110111010001
11100010101112=+1.45496642 x24
=23.27946281
4349C77616=0100001101001001110
00111011101102=+1.57639956
x27=201.77914429
Sum=225.05860710=+1.75827036x27

=01000011011000010000111100000
0012= 43610F0116
6-Results

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3031

 The results of synthesis
experiments conducted on the
floating-point operator modules
fp_add, fp_ sub and fp_mul presents,
the aims of the experiments are to:
-determine the area of the above
modules in several floating-point
formats,
-examine the relationship between the
area and total bitwidth of the format,
and
-estimate the number of modules that
can realistically be used on a single
FPGA.
The experiments were conducted by
synthesizing the modules for specific
floating-point formats Table- 2 shows
results of the synthesis experiments
on floating-point operator modules.
The quantities for the area of each
instance are expressed in Xilinx
XCV1000 FPGA. Results for the
fp_add module in Table-2 also
represent the fp_sub module, which
has the same amount of logic.
Floating-point formats used in the
experiments were chosen to represent
the range of realistic floating-point
formats from 8 to 32 bits in total
bitwidth and include the IEEE single
precision format E1 in Table-2. The
number of operator cores per
processing element, shown in the two
rightmost columns, is based on a
Xilinx XCV1000 FPGA, with a total
of 12288 slices, with 85% area
utilization. A realistic design cannot
utilize all the resources on the FPGA
because of routing overhead; a
practical maximum is estimated at
about 85%. Also included is an
overhead allowance of approximately
1200 slices for necessary circuitry
other than the operators themselves.

 The results in Table-2 show growth
in area with increasing total bitwidth,
for all modules. This growth is
represented graphically in Figure-8.
7-Conclusions
 The library of parameterized
hardware modules for floating point
arithmetic has been created and
modules for format control,
arithmetic operators and conversion
to and from any fixed point format.
All the modules are parameterized to
operate on any floating point format,
with rounding to zero or nearest.
Limited exception handling is
implemented in all the modules, with
the ability to propagate an error.
Ready and done synchronization
signals are provided in all modules.
The library can be used to implement
finely tuned datapaths, in both fixed
and floating point arithmetic, to the
exact bitwidths, ranges and precisions
required by the signals in the
algorithm. Also, library modules for
format conversion enable creation of
hybrid fixed and floating point design.
 Synthesis results indicate design on
a Xilinx XCV1000 FPGA may
include up to 31 addition or 13
multiplication operators, complete
with demoralizing, rounding and
normalizing functionality each, for
the IEEE single precision format.
Similarly, a useful custom floating
point format, with 5 exponent and 6
mantissa bits for example, may
provide the designer with up to 113
addition or 85 multiplication modules,
all also complete with full format
handling functionalities, on the same
FPGA
8-Future Work
 Many of the approaches used by the
synthesis framework presented in this

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3032

work make use of simple methods
and algorithms. However, this first
version of the synthesis framework is
dedicated to present the basic
methodology for a new conceptual
synthesis methodology.
Optimizations of these methods are
possible but have been left for future
work.
9-Bibliography
[1] B. Fagin and C. Renard. Field
Programmable Gate Arrays and
Floating Point Arithmetic. IEEE
Transactions on VLSI Systems, 2(3),
September 1994.
[2] N. Shirazi, A. Walters, and P.
Athanas. Quantitative Analysis of
Floating Point Arithmetic on FPGA
Based Custom Computing Machines.
In Proceedings of the IEEE
Symposium on FPGAs for Custom
Computing Machines, California,
April 1995
[3] W. B. Ligon III, S. McMillan, G.
Monn, K. Schoonover, F. Stivers, and
K. D. Underwood. A Re-evaluation
of the Practicality of Floating-Point
Operations on FPGAs. In
Proceedings of the IEEE Symposium
on FPGAs for Custom Computing
Machines, April 1998
[4] L. Louca, T. A. Cook, and W. H.
Johnson. Implementation of IEEE
Single Precision Floating Point
Addition and Multiplication on
FPGAs. In K. L. Pocek and J. Arnold,
editors, Proceedings of the IEEE
Symposium on FPGAs for Custom
Computing Machines, pages 107–116,
April 1996.
[5] I. Stamoulis, M. White, and P. F.
Lister. Pipelined Floating-Point
Arithmetic Optimized for FPGA
Architectures. In 9th International

Workshop on Field Programmable
Logic and Applications, volume 1673
of LNCS, pages 365–370, August-
September 1999.
[6] I. Sahin, C. S. Gloster, and C.
Doss. Feasibility of Floating-Point
Arithmetic in Reconfigurable
Computing Systems. In 2000 MAPLD
International Conference, 2000
[7] I. Sahin and C. S. Gloster.
Floating-Point Modules Targeted for
Use with RC Compilation Tools.
http://www4.ncsu.edu:8030/˜isahin/p
apers/DACPaper.pdf, (last visited
January 2002), 2001
[8] J. Dido, N. Geraudie, L. Loiseau,
O. Payeur, Y. Savaria, and D. Poirier.
A Flexible Floating-Point Format for
Optimizing Data-Paths and Operators
in FPGA Based DSPs. In
International Symposium on Field-
Programmable Gate Arrays, pages
50–55. ACM, ACM Press, February
2002.
[9]IEEE Standards Board and ANSI.
IEEE Standard for Binary Floating
point Arithmetic, 10985. IEEE Std
754-1985
[10]J. P. Hayes. Computer
Architecture and Organization.
McGraw Hill, Second edition, 1988.
[11]Annapolis Micro System INC.
Floating Point Math Library.
Technical Data Sheet Doc # 122763-
0000 Rev 1.7.
[12]Z. Luo and M. Martonosi.
Accelerating Pipelined Integer and
floating point Accumulations in
Configurable Hardware with Delayed
Addition Techniques. In IEEE
Transactions on Computer, volume
49, page 208-218, March 2000.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www4.ncsu.edu:8030/
http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3033

Table (1)

operand 1 Operand 2 Sum
41BA3C57 4349C776 43610F01

Table (2) Operator synthesis results

Format
 total

Bitwidth
 exponent fraction

Area
fp_add fp_mul

 Per IC
fp_add fp_mul

A0 8 2 5 39 46 236 200
A1 8 3 4 39 51 236 180
A2 8 4 3 32 36 288 256
B0 12 3 8 84 127 109 72
B1 12 4 7 80 140 115 65
B2 12 5 6 81 108 113 85
C0 16 4 11 121 208 76 44
C1 16 5 10 141 178 65 51
C2 16 6 9 113 150 81 61
D0 24 6 17 221 421 41 21
D1 24 8 15 216 431 42 21
D2 24 10 13 217 275 42 33
E0 32 5 26 328 766 28 12
E1 32 8 23 291 674 31 13
E2 32 11 20 284 536 32 17

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3034

Figure (1) Alignment of fields in a floating-point format

Figure (2) Floating-point addition

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3035

Figure (3) Floating-point multiplication

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3036

Figure (4) Conversion from unsigned fixed-point to floating-point representation

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3037

Figure (5) Conversion from signed fixed-point to floating-point representation

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3038

Figure (6) Conversion from floating-point to unsigned fixed-point representation

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3039

Figure (7) Conversion from floating-point to signed fixed-point representation

Figure (8) Growth of area with increasing bitwidth

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3040

VHDL Entities
Module:
parameterized_adder
Entity:
entity parameterized_adder is
generic
bits : integer := 0
);
port
(
--inputs
A : in std_logic_vector(bits-1 downto 0);
B : in std_logic_vector(bits-1 downto 0);
CIN : in std_logic;
--outputs
S : out std_logic_vector(bits-1 downto 0) := (others=>'0');
COUT : out std_logic := '0'
);
end parameterized_adder;
Module:
parameterized_subtractor
Entity:
entity parameterized_subtractor is
generic
(
bits : integer := 0
);
port
(
--inputs
A : in std_logic_vector(bits-1 downto 0);
B : in std_logic_vector(bits-1 downto 0);
--outputs
O : out std_logic_vector(bits-1 downto 0) := (others=>'0')
);
end parameterized_subtractor;
Module:
parameterized_multiplier
Entity:
entity parameterized_multiplier is
generic
(
bits : integer := 0
);
port
(
--inputs
A : in std_logic_vector(bits-1 downto 0);

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3041

B : in std_logic_vector(bits-1 downto 0);
--outputs
S : out std_logic_vector((2*bits)-1 downto 0) := (others=>'0')
);
end parameterized_multiplier;
Module:
parameterized_variable_shifter
Entity:
entity parameterized_variable_shifter is
generic
(
bits : integer := 0;
select_bits : integer := 0;
direction : std_logic := '0' --0=right,1=left
);
port
(
--inputs
I : in std_logic_vector(bits-1 downto 0);
S : in std_logic_vector(select_bits-1 downto 0);
CLEAR : in std_logic;
--outputs
O : out std_logic_vector(bits-1 downto 0)
);
end parameterized_variable_shifter;
Module:
delay_block
Entity:
entity delay_block is
generic
(
bits : integer := 0;
delay : integer := 0
);
port
(
--inputs
A : in std_logic_vector(bits-1 downto 0);
CLK : in std_logic;
--outputs
A_DELAYED : out std_logic_vector(bits-1 downto 0) := (others=>'0')
);
end delay_block;
Module:
parameterized_absolute_value
Entity:
entity parameterized_absolute_value is
generic

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3042

(
bits : integer := 0
);
port
(
--inputs
IN1 : in std_logic_vector(bits-1 downto 0);
--outputs
EXC : out std_logic := '0';
OUT1 : out std_logic_vector(bits-1 downto 0) := (others=>'0')
);
end parameterized_absolute_value;
Module:
parameterized_priority_encoder
Entity:
entity parameterized_priority_encoder is
generic
(
man_bits : integer := 0;
shift_bits : integer := 0
);
port
(
--inputs
MAN_IN : in std_logic_vector(man_bits-1 downto 0);
--outputs
SHIFT : out std_logic_vector(shift_bits-1 downto 0) := (others=>'0');
EXCEPTION_OUT : out std_logic := '0'
);
end parameterized_priority_encoder;
Module:
parameterized_mux
Entity:
entity parameterized_mux is
generic
(
bits : integer := 0
);
port
(
--inputs
A : in std_logic_vector(bits-1 downto 0);
B : in std_logic_vector(bits-1 downto 0);
S : in std_logic;
--outputs
O : out std_logic_vector(bits-1 downto 0) := (others=>'0')
);
end parameterized_mux;

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3043

Module:
parameterized_comparator
Entity:
entity parameterized_comparator is
generic
(
bits : integer := 0
);
Port
(
--inputs
A : in std_logic_vector(bits-1 downto 0);
B : in std_logic_vector(bits-1 downto 0);
--outputs
A_GT_B : out std_logic := '0';
A_EQ_B : out std_logic := '0';
A_LT_B : out std_logic := '0'
);
end parameterized_comparator;
Module:
denorm
Entity:
entity denorm is
generic
(
exp_bits : integer := 0;
man_bits : integer := 0
);
port
(
--inputs
IN1 : in std_logic_vector(exp_bits+man_bits downto 0);
READY : in std_logic;
EXCEPTION_IN : in std_logic;
--outputs
OUT1 : out std_logic_vector(exp_bits+man_bits+1 downto 0) := (others=>'0');
DONE : out std_logic := '0';
EXCEPTION_OUT : out std_logic := '0'
);
end denorm;
Module:
rnd_norm
Entity:
entity rnd_norm is
generic
(
exp_bits : integer := 0;
man_bits_in : integer := 0;

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3044

man_bits_out : integer := 0
);
port
(
--inputs
IN1 : in std_logic_vector((exp_bits+man_bits_in) downto 0);
READY : in std_logic;
CLK : in std_logic;
ROUND : in std_logic;
EXCEPTION_IN : in std_logic;
--outputs
OUT1 : out std_logic_vector((exp_bits+man_bits_out) downto 0) := (others=>'0');
DONE : out std_logic := '0';
EXCEPTION_OUT : out std_logic := '0'
);
end rnd_norm;
Module:
fp_add
Entity:
entity fp_add is
generic
(
exp_bits : integer := 0;
man_bits : integer := 0
);
port
(
--inputs
OP1 : in std_logic_vector(man_bits+exp_bits downto 0);
OP2 : in std_logic_vector(man_bits+exp_bits downto 0);
READY : in std_logic;
EXCEPTION_IN : in std_logic;
CLK : in std_logic;
--outputs
RESULT : out std_logic_vector(man_bits+exp_bits+1 downto 0) := (others=>'0');
EXCEPTION_OUT : out std_logic := '0';
DONE : out std_logic := '0'
);
end fp_add;
Module:
fp_sub
Entity:
entity fp_sub is
generic
(
exp_bits : integer := 0;
man_bits : integer := 0
);

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3045

port
(
--inputs
OP1 : in std_logic_vector(man_bits+exp_bits downto 0);
OP2 : in std_logic_vector(man_bits+exp_bits downto 0);
READY : in std_logic;
EXCEPTION_IN : in std_logic;
CLK : in std_logic;
--outputs
RESULT : out std_logic_vector(man_bits+exp_bits+1 downto 0) := (others=>'0');
EXCEPTION_OUT : out std_logic := '0';
DONE : out std_logic := '0'
);
end fp_sub;
Module:
fp_mul
Entity:
entity fp_mul is
generic
(
exp_bits : integer := 0;
man_bits : integer := 0
);
port
(
--inputs
OP1 : in std_logic_vector(exp_bits+man_bits downto 0);
OP2 : in std_logic_vector(exp_bits+man_bits downto 0);
READY : in std_logic;
EXCEPTION_IN : in std_logic;
CLK : in std_logic;
--outputs
RESULT : out std_logic_vector(exp_bits+(2*man_bits) downto 0) := (others=>'0');
EXCEPTION_OUT : out std_logic := '0';
DONE : out std_logic := '0'
);
end entity;
Module:
fix2float
Entity:
entity fix2float is
generic
(
fix_bits : integer := 0;
exp_bits : integer := 0;
man_bits : integer := 0
);
port

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3046

(
--inputs
FIXED : in std_logic_vector(fix_bits-1 downto 0);
ROUND : in std_logic;
EXCEPTION_IN : in std_logic;
CLK : in std_logic;
READY : in std_logic;
--outputs
FLOAT : out std_logic_vector(exp_bits+man_bits downto 0) := (others=>'0');
EXCEPTION_OUT : out std_logic := '0';
DONE : out std_logic := '0'
);
end fix2float;
Module:
float2fix
Entity:
entity float2fix is
generic
(
fix_bits : integer := 0;
exp_bits : integer := 0;
man_bits : integer := 0
);
port
(
--inputs
FLOAT : in std_logic_vector(exp_bits+man_bits downto 0);
ROUND : in std_logic;
EXCEPTION_IN : in std_logic;
CLK : in std_logic;
READY : in std_logic;
--outputs
FIXED : out std_logic_vector(fix_bits-1 downto 0) := (others=>'0');
EXCEPTION_OUT : out std_logic := '0';
DONE : out std_logic := '0'
);
end float2fix;
VHDL Description of the IEEE Single Precision Adder
--==--
-- LIBRARIES --
--==--
-- IEEE Libraries --
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
-- float
library PEX_Lib;

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3047

use PEX_Lib.float_pkg.all;
--
-- IEEE Single Precision Adder --
--
entity single_precision_adder is
port
(
--inputs
IN1 : in std_logic_vector(31 downto 0);
IN2 : in std_logic_vector(31 downto 0);
READY : in std_logic;
EXCEPTION_IN : in std_logic;
ROUND : in std_logic;
CLK : in std_logic;
--outputs
OUT1 : out std_logic_vector(31 downto 0) := (others=>'0');
EXCEPTION_OUT : out std_logic := '0';
DONE : out std_logic := '0'
);
end single_precision_adder;
--
-- IEEE Single Precision Adder --
--
architecture single_precision_adder_arch of single_precision_adder is
signal rd1 : std_logic := '0';
signal rd2 : std_logic := '0';
signal rd3 : std_logic := '0';
signal rd4 : std_logic := '0';
signal exc1 : std_logic := '0';
signal exc2 : std_logic := '0';
signal exc3 : std_logic := '0';
signal exc4 : std_logic := '0';
signal rnd1 : std_logic := '0';
signal rnd2 : std_logic := '0';
signal rnd3 : std_logic := '0';
signal rnd4 : std_logic := '0';
signal op1 : std_logic_vector(32 downto 0) := (others=>'0');
signal op2 : std_logic_vector(32 downto 0) := (others=>'0');
signal sum : std_logic_vector(33 downto 0) := (others=>'0');
begin
--instances of components
denorm1: denorm
generic map
(
exp_bits => 8,
man_bits => 23
)
port map

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3048

(
--inputs
IN1 => IN1,
READY => READY,
EXCEPTION_IN => EXCEPTION_IN,
--outputs
OUT1 => op1,
DONE => rd1,
EXCEPTION_OUT => exc1
);
denorm2: denorm
generic map
(
exp_bits => 8,
man_bits => 23
)
port map
(
--inputs
IN1 => IN2,
READY => READY,
EXCEPTION_IN => EXCEPTION_IN,
--outputs
OUT1 => op2,
DONE => rd2,
EXCEPTION_OUT => exc2
);
adder: fp_add
generic map
(
exp_bits => 8,
man_bits => 24
)
port map
(
--inputs
OP1 => op1,
OP2 => op2,
READY => rd3,
EXCEPTION_IN => exc3,
CLK => CLK,
--outputs
RESULT => sum,
EXCEPTION_OUT => exc4,
DONE => rd4
);
rnd_norm1: rnd_norm
generic map

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 27 , No.16 , 2009 Floating Point Optimization Using VHDL

 3049

(
exp_bits => 8,
man_bits_in => 25,
man_bits_out => 23
)
port map
(
--inputs
IN1 => sum,
READY => rd4,
CLK => CLK,
ROUND => rnd4,
EXCEPTION_IN => exc4,
--outputs
OUT1 => OUT1,
DONE => DONE,
EXCEPTION_OUT => EXCEPTION_OUT
);
rd3 <= rd1 AND rd2;
exc3 <= exc1 OR exc2;
main: process (CLK)
begin
if(rising_edge(CLK)) then
rnd4 <= rnd3;
rnd3 <= rnd2;
rnd2 <= rnd1;
rnd1 <= ROUND;
end if;--CLK
end process;--main
end single_precision_adder_arch;--end of architecture

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

