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Abstract

Due to inherent limitations of the fixed-point representation, it is sometimes
desirable to perform arithmetic operations in the floating-point format. Although
an established standard for floating-point arithmetic exists, optima hardware
implementations of agorithms require use of floating-point formats different from
the ones specified in the standard. Hardware modules for floating-point format
control, arithmetic operators and conversion to and from any fixed-point format
are presented. Synthesis results for arithmetic operator modules in several
floating-point formats, induding the IEEE single precision format, Synthesis and
processing results for both implementations are shown and compared.
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Introduction of them have parameterized
The hardware modules that functionality, so that they can be used

congtitute the parameterized library
for floating-point arithmetic rely on
the existence of some basic logic
functions, such as multiplexers and
fixed point adders. These basic
building blocks that perform
functions commonly encountered in
logic design dl share one
characteristic - parameterization. All

to build higher level modules that are
themselves parameterized. One of the
most widely implemented formats for
representing and storing numerical
vauesinthe

binary number system is the fixed-
point format. Every numerical vaue
is composed of an integer part and a
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fractional part and the ddimitation
between the two is referred to as the
radix point. In the fixed-point format,
the radix point is always implied to
be in a predetermined position. The
format thus gets its name from the
fixed location of the radix point.
Usudlly, the radix point is assumed to
be located immediately to the right of
the least significant digit, in which
case only integer vaues are
represented.

1-Related Work

One of the earliest investigations
into using FPGAs to implement
floating-point arithmetic was done by
Fagin e d. [1], who in 1994 showed
that implementing IEEE single
precision operators was possible, but
also impractica on then current
FPGA technology. The circuits
designed by the authors were an
adder and a multiplier and both had
full implementation of al four
rounding modes specified by the
IEEE 754 sandard. This line of
thought was expanded on by the
significant work of Shirazi et a. [2]
who suggested application-specific
formats for image and DSP
algorithms in widths of 16 (1-6-9)
and 18 (1-7-10) bits, as opposed to
the full 32 (1-8-23) bits in the IEEE
standard. Ancther significant work
came from Louca et a.[3] in which
the authors, building on the work of
Shirazi and others, abstract the
normalization operation away from
the actual arithmetic operators, in an
effort to conserve area. In an effort to
expand the capabilities of existing
architectures, Ligon e d. [4]
presented | EEE single precision adder
and multiplier drcuits on the then

newly available Xilinx 4000 series
FPGAs. Both circuits supported
rounding to nearest, but did not use a
separate normalizing unit. Similar
work by Stamoulis et al. [5] presented
|IEEE single precision
adder/subtractor, multiplier  and
division circuits. Two works by Sahin
et a. [6] [7] present adder, subtractor,
multiplier and accumulator circuits,
but again only in IEEE single
precision format. Also, rounding
capability is not implemented. Recent
work by Dido et al.[8] discusses
optimization of datapaths, especialy
in image and video processng
applications. This datapath
optimization is achieved

by providing flexible floating-point
formats that are optimd for every
signal in the datapath. The floating-
point formats in our work are a
generdlized superset of al these
formats. It includes al the IEEE
formats as partticular instances of
exponent and mantissa bitwidths, as
wdl as the flexible floating-point
format presented by Dido et a.[8]
and the two formats by Shirazi et
a.[2]. Also, we abstract
normalization as wel as rounding
functionality into a separate unit with
a choice of rounding to zero and
rounding to nearest. In this way, as
Dido et d. [8] explained
2-Floating-Point For mat

The floating-point format is the
most common way of representing
real numbers in computer systems.
The floating-point format is similar to
the scientific notation of numbers,
such as (-1.35 x 10°) there are three
fields in the representation of a value
in the floating-point format: sign s,
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exponent e and fraction f. Thus,
every floating-point value can be
defined by
(_1)3 X 1. f X 2e—BIAS
Depending on the bit width of the
exponent field in the particular format,
given that the exponent bit width is
exp_hits, we can represent exponent
values from -22P-Pt1 +1 1o 22P-P1sT 1
by assigning the value 2°*-""* -1 to
the bias. It is worth noting that the
bias valueis not constant and changes
with exponent bitwidth. The bitwidth
alignment of the three fields is shown
in Figure-1. The distinction between
terms fraction and mantissa is that
fraction represents only the portion of
the mantissa to the right of the radix
point (fractional part). Naturaly, a
tradeoff exists in total bitwidth
between smaller width requiring less
hardware resources and higher width
providing better precision. Also,
within a certain total bitwidth, it is
possible  to assign various
combinations of values to the
exponent and fraction fidds ( Figure-
1), wider exponent fieds brings
higher range and wider fraction fields
brings higher precision[9].
2-|lEEE Standard and
Formats

The Institute of Electrica and
Electronics Engineers (IEEE) issued
standard 754 in 1985, specifying
details of implementing binary
floati ng-point arithmetic. This
standard details four floating-point
formats - basic and extended each in
single and double precision bitwidths.
Most implementations of floating-
point arithmetic adhere to one or
more of these standard formats,
though few follow the standard
absolutdy. However, optimal

Other

implementations of agorithms may
not aways reguire bitwidths as
specified by the standard. In fadt, it is
often the case that much smaller
bitwidths than those specified in the
754 standard are sufficient to provide
desired precison and occupy less
resource than the full standard
bitwidth i mplementation [9].

3- Reconfigurable Hardware

Field Programmable Gate Array
(FPGA)

Fiedd Programmable Gate Arrays
(FPGAS) areintegrated circuits with a
flexible architecture, such that ther
structure can be programmed by the
designer. FPGASs are composed of an
array of hardware resources caled
configurable logic blocks (CLBS).
The designer creates the functionality
of the overdl circuit by configuring
CLBs to perform appropriate logic
functions. Hence, FPGAs are a form
of reconfigurable hardware,
combining flexibility similar to
software with the speed of speciaized
hardware. Designs mapped to FPGAS
are usualy described in hardware
description languages, such as VHDL
or Verilog. In this work, al hardware
descriptions are written in VHDL. A
number of software tools exists to aid
the designer in mapping the high-
level description of the design in
VHDL tothelogic leve of each CLB.
Such tools peform  synthess,
mapping, placing and routing of the
design to the hardware[1, 8].
4-Arithmetic Operator Hardware
Modules
4-1Addition

Addition is one of the most
computationally complex operations
in floating-point arithmetic. The
algorithm of the addition operation
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for  floating-point  numbers is
composed of four steps:

- ensure that the operand with larger
magnitudeisoninput 1 (swap),

-align the mantissas (shift_adjust),
-add or subtract the mantissas
(add_sub), and

-shift the result mantissa right by one
bit and increment the exponent if
addition overflow occurred.

Each of the four steps of the
algorithm is implemented in a
dedicated module, shown above in
brackets. The four sub-modules are
assembled into the overal fp add
module as shown in Figure- 2. The
swap submodule compares the
exponent and mantissa fieds of the
input variables. Based on these two
comparisons, the two floating-point
inputs are multiplexed to the outputs.
If the exponent field of input A is
larger, or the exponent fields are
equal and the mantissa of input A is
larger, input A is multiplexed to
output large and input B to output
smal. Otherwise, the reverse
mapping of inputs to outputs occurs.

Submodule shift_adjust is
responsible for aigning the mantissas
of the larger and smaller operands. It
achieves this by shifting the smaller
mantissa to the right as many bits as
is the difference between the
exponents. Another function of this
module is to introduce the guard bit
into the smaller operand’s mantissa
Guard bits are introduced in the
addition agorithm to provide
rounding to nearest for the result.
Hence, the mantissa of the sum is one
bit wider than the mantissas of the
inputs. Expansion of the mantissa
fields happens during aligning of the
mantissas, so that the extra

information the guard bit carries can
be saved when the smaller operand’s
mantissa is shifted right and some
least significant bits may be lost. The
guard bit is introduced into the larger
operand’s mantissa to the right of the
least significant bit and adways has
vaue ’0’. Once the mantissas are
aligned, it is necessary to ether add
or subtract them, depending on the
signs of the two operands. If the signs
are the same, the addition operation is
constructive and the mantissas are
added. If the signs are opposite,
however, the addition operation is
destructive and the mantissas are
subtracted. Sub-module add sub will
perform this variabl e operation under
the control of the op input, which is
fed with the XOR of the input sign
bits.

Outputs of the overal addition
algorithm ae controlled by the
correction module. If an exception is
indicated on the input, the exception
is propagated to the output and the
result output is s to al zeros.
Otherwise, if the input vaues are
detected to be of the same magnitude,
but opposite sign, an exception is not
generated on the output, but the result
output is still blanked out, to indicate
zerovalue, as A + (-A) = 0. Otherwise,
if an overflow in the addition of the
mantissas was detected, the result
mantissa is shifted to the right by one
bit, truncating the least significant bit,
and the most significant bit is filled
with ’1’. Also, the exponent field is
incremented by 1, to reflect the shift
in the mantissa. These operations
correct for the overflow in the
addition of the mantissas. Finaly, the
floating-point value assembled from
the sign, exponent and mantissa fields
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is presented on the output. Module
fp_add is parameterized by the width
of the exponent and mantissa fields of
the floating-point format it operates
on|[6, 7, 10, and 11].
4-2Subtraction

The subtraction operation is similar
to the addition operation, as

A-B=A+(-B)
Thus, we use a slightly modified
addition module to  perform

subtraction. This is especialy helped
by the sign-magnitude form of the
floating-point format. To invert a
floating-point value, all that needs to
be doneis to invert the sign bit (most
significant bit, MSB, of the floating-
point signal).
There is only one, minor structura
difference between the addition and
subtraction modules: the inverter on
the MSB of the second operand is not
used on the input to the
parameterized comparator module
(Figure-2), but on the input to the
swap module. That way, weinvert the
sign of the second operand to achieve
subtraction. Also, the comparator
now monitors input values equa in
both sign and magnitude, since A - A
= 0. Because the inverter is only
moved from one location to another,
module fp sub occupies the exact
same area as the fp_add module
Similarly to the fp_add module, the
fp_sub module is also parameterized
by the width of the exponent and
mantissa fields of the floating-point
format it operates on [5, 6, 11, and
12].
4-3Multiplication

Unlike fixed-point arithmetic, in
floati ng-point arithmetic,
multiplication is a relatively straight-
forward operation compared to

addition. This is again due to the
sign-magnitude nature of the floating-
point format, because

(D% x mx2®) x ((-1)% x my
X 2%)=(-1)"" x (mxm)x
2(el+e2)

From the above, it can be concluded
that the three fields of the floating-
point format do not interact during
multiplication and can thus be
processed at the sametime, in pardldl.
Thesign of the product is given as the
exclusive OR (XOR) of the input
value signs. Mantissa of the product
is caculated by fixed-point
multiplication of the input vdue
manti ssas, while the exponents of the
input values are added to give the
exponent of the product. The only
further complication of the floating-
point multiplication algorithm is the
fact tha the exponent fidds are
biased. When two biased exponent
fiedds are added, the result contains
the bias twice, one of which must be
subtracted. If, using IEEE standard
754 notation, E is an unbiased
exponent and e is a biased exponent,
it stands that:

e + & = (E1 + BIAS) + (E; + BIAS)
=(E1+E)+2xBIAS=E, +2x
BIAS= e + BIAS

The structure of the floating-point
multiplier is given in Figure-3. The
fp_mul module is parameterized by
the bitwidths of the exponent and
mantissa fields of the floating-point
format it processes. The bitwidth of
the product is 1 + exp_hits + (2 X
man_bits ) . The mantissa field has
twice the bitwidth of the input
mantissas because it is ther fixed-
point product [5, 7, 11, and 12].
4-4Format Conversion Hardware
Modules
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Custom hardware architectures
have the ability to perform some
sections of the algorithm in fixed-
point arithmetic and others in
floating-point arithmetic, depending
on the optimal representation of each
variable in the algorithm. It is the
goa of our library to provide al the
hardware modul es the designer needs
to build such hybrid fixed and
floating-point architectures. Hence
some of the most important modules
are those that convert between fixed
and floating-point representations of
variables[7, 11, and 12].
4-5Conversion from Fixed-Point To
Floating-Point

Module fix2float was designed to
convert a given vaue from fixed to
floating-point representation. Thus,
its input is afixed-point vaue and its
output is the corresponding floating-
point representation. Since fixed-
point values can be in the unsigned or
signed (two’s complement) form, two
versions of the fix2float module have
been deve oped, The structure of the
unsigned version is shown in Figure-
4, while the structure of the signed
version is shown in Figure-5. The
signed version is more complex due
to handling of the two’s complement
representations of the input and hence
has alonger latency of 5 clock cycles,
as opposed to 4 clock cycles for the
unsigned version In the conversion
from signed fixed-point numbers, it
may be necessary to derive the two’s
complement of the input signal, while
in the case of unsigned fixed-point
numbers, Nno operation is necessary,
as only non-negative vaues can be
represented. This added operation
resultsin the differencein latencies of
the signed and unsigned module

versions. The mantissa of the fina
result is produced by shifting left the
absolute value of the input until its
MSB is ’1’, while the exponent is
derived from format constants and the
number of shifts made to the mantissa.
For example:
01001011, = 75 = 01001011, x 2° =
10010110, x 2 = 1.0010110, x 2" =
1.0010110, x 2° = 1.171875x 64 = 75
—f = 0010110, — e= 6+BIAS

The value of the exponent field
depends on the normalizing shift of
the mantissa, shift, the bitwidth of the
fixed-point input, fix_ bits, and the
bias value, BIAS. Itsfinal formis
e = E+ BIAS = ((fix_bits - 1) — shift)
+ BIAS = (fix_bit + BIAS - 1) - shift

The absolute value of the input is
fed into a priority encoder, to
determine the shift value This
constitutes the first clock cycle of the
unsigned architecture and the second
cycle of the signed one. Once the
vaue of the normalizing shift is
known, the exponent fidd is
cadculated by performing the
subtraction (fix_ bits + BIAS - 1) -
shift. The value of the signa const in
Figures-4 and-5is fix_bits + BIAS -
1. Once the value of the normalizing
shift is known, the mantissa is
produced by shifting | eft the absolute
val ue of the input and the exponent is
calculated through subtraction. These
operations happen in paralld, in the
second clock cycle of the unsigned
architecture and third of the signed
one. After the shifting operation, the
width of the mantissa fidd is that of
the fixed-point input and may need to
be reduced to the width specified by
the floating-point format that is to
appear on the outpui.
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This reduction in bitwidth calls for
rounding. Rounding to zero or nearest
are both available through input
round and happenin clock cycle three
in the unsigned architecture and four
in the signed one The final clock
cycle of both architectures is
dedicated to determining the outputs
of the circuit. The floating-point
output is either the cal culated val ue or
al zeros. The latter option is
multiplexed to the output in case of
an exception being received a the
input  or  encountered  during
processing, or a zero fixed-point input,
which requires an all-zero floating-
point output. Otherwise, the floating-
point value calculated by the module
is presented on the output. Both
versions of the fix2float module are
parameterized by three values. the
width of the fixed-point input, the
width of the exponent fidd and the
width of the mantissa fiedd of the
floating-point output [6, 7, 11, and
12].
4-6Conversion from Floating-Point
To Fixed-Point

Module float2fix implements the
inverse function to that of the
fix2float module: conversion from the
floating-point representation of a
valueto its fixed-point representation.
As before, two versions of the
float2fix module exist: one for
converting to signed and the other to
unsigned fixed-point representation
of the input floating-point value. The
structure  of the hardware for
conversion to the unsigned fixed-
point representation is shown in
Figure-6, while Figure-7 shows the
signed version. Due to the added
complexity of handling two’s
complement representations of the

output value, the signed version has a
latency of 5 dock cycles, while the
unsigned version has a latency of 4
clock cycles. The functioning of the
float2fix module can easily produce
exceptions because, in generd,
floating-point formats have a wider
range than fixed-point formats.

For instance, 4l floating-point
values that have negative exponents
(magnitude less than 1) cannot be
represented in integer fixed-point
formats by values other than O or 1.
Also, al floating-point values that
exceed the largest representable va ue
in the target fixed-point format
produce an exception. In the unsigned
version, another exception is caused
by negaive floaing-point values
appearing on the input, which
instance, al floating-point values that
have negative exponents (magnitude
less than 1) cannot be represented in
integer fixed-point formats by values
other than O or 1.

Also, dl floating-point values that
exceed the largest representable va ue
in the target fixed-point format
produce an exception. In the unsigned
version, another exception is caused
by negaive floaing-point values
appearing on the input, which can by
definition not be represented in
unsigned fixed-point format. These
exceptions are trapped in the first
clock cycle of both the signed and the
unsigned architecture. Also in this
clock cycle, the shift required to
produce the fixed-point output from
the mantissa value is cd culated using
the exponent fied. This shift is
simply the unbiased vaue of the
exponent. For example:

1.01011, x 2° = 1.34375 x 64 = 86 =
1010110, x 2° = 86
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The shift required is cadculated by
subtracting the bias value from the
exponent field of the input. In the
second clock cycle of both versions
of the float2fix module, the absolute
value of the fixed-point
representation is obtained by shifting
left the mantissa field of the input. In
parald with this, the exception
signals obtained in the first clock
cycle are combined into one
exception signal. Because the fixed-
point format on the output may
specify a smaller bitwidth than the
mantissa field of the input floating-
point format, some least significant
bits of the absol ute val ue of the fixed-
point representation, obtained by
shifting the mantissa field, may need
to be truncated. This truncation cals
for rounding functionality,
implemented in the third clock cycle
of both the signed and the unsigned
architecture. The prepared absolute
value of the fixed-point
representation, rounded to the
required bitwidth, is ready for output
in the unsigned version, while in the
signed version, it may need to
undergo a two’s complement
operation before being placed on the
output. It is because of this extra step
that the signed version of the module
has the longer latency of 5 clock
cycles. The two’s complement of the
absolute value is found by inverting
all the bits and adding 1. The sign bit
of the input floating-point value is
used to sdect the correct form
(positive or two’s compl ement) of the
fixed-point value, before it is passed
to the next stage The final stage of
both the signed and the unsigned
architectures is the output stage
where the computed fixed-point

representation is placed on the outpuit,
unless the input was zero or an
exception was encountered during
operation or received at the input, in
which case the output is set to dl
zercs. Module  float2fix is
parameterized by the bitwidths of the
exponent and mantissa fidds of the
input floating-point signd, as well as
the bitwidth of the fixed-point output
[5,7,11, and 12].
5-Testing

All the hardware modules tested
both in simulation and in hardware.
The purpose of the two testing stages
was to ensure the correct operation of
the VHDL description of each
module. A set of input vectors was
developed for each module to test its
operation with a range of inputs.
Parameterization of each module was
also tested to ensure correct operation
of the module at various instances in
the design space. The simulator used
to test the VHDL descriptions was
Xilinx ISE 9.2i . Iteration between
modification of the VHDL
description and andysis in the
simulator continued until the correct
operation of the modul e was achieved
for al the test vectors. An example of
a test vector used to test the IEEE
single precision adder circuit given
be ow.
41BA3C57,,=0100000110111010001
1110001010111,=+1.45496642  x2*
=23.27946281
4349C776,6=0100001101001001110
0011101110110,=+1.57639956
x2'=201.77914429
SUM=225.05860710=+1.75827036x2’
=01000011011000010000111100000
001,= 43610F01;6
6-Results
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The results of synthesis
experiments  conducted on the
floating-point  operator  modules

fp_add, fp_ sub and fp_mul presents,
the aims of the experiments are to:
-determine the area of the above
modules in several floating-point
formats,

-examine the rel ationship between the
area and total bitwidth of the format,
and

-estimate the number of modules that
can redistically be used on a single
FPGA.

The experiments were conducted by
synthesizing the modules for specific
floating-point formats Table- 2 shows
results of the synthesis experiments
on floating-point operator modules.
The quantities for the area of each
instance are expressed in Xilinx
XCV1000 FPGA. Results for the
fp_add module in Table-2 aso
represent the fp_sub module, which
has the same amount of logic.
Foating-point formats used in the
experiments were chosen to represent
the range of redlistic floating-point
formats from 8 to 32 bhits in tota
bitwidth and include the IEEE single
precision format E1 in Table-2. The
number of operator cores per
processing € ement, shown in the two
rightmost columns, is based on a
Xilinx XCV1000 FPGA, with a totd
of 12288 dlices, with 85% area
utilization. A redligtic design cannot
utilize al the resources on the FPGA
because of routing overhead; a
practical maximum is estimated at
about 85%. Also included is an
overhead allowance of gpproximatdy
1200 dlices for necessary circuitry
other than the operators themsel ves.

The results in Table-2 show growth
in area with increasing tota bitwidth,
for al modules. This growth is
represented graphically in Figure-8.
7-Conclusions

The library of parameterized
hardware modules for floating point
arithmetic has been created and
modules for format  control,
arithmetic operators and conversion
to and from any fixed point format.
All the modules are parameterized to
operate on any floating point format,
with rounding to zero or nearest.
Limited exception handling is
implemented in al the modules, with
the ability to propagate an error.
Ready and done synchronization
signals are provided in all modules.
The library can be used to implement
findy tuned datapaths, in both fixed
and floating point arithmetic, to the
exact bitwidths, ranges and precisions
required by the sd€ignals in the
algorithm. Also, library modules for
format conversion enable creation of
hybrid fixed and floating point design.

Synthesis results indicate design on
a Xilink  XCV1000 FPGA may
include up to 31 addition or 13
multiplication operators, complete
with demoralizing, rounding and
normalizing functionality each, for
the IEEE single precison format.
Similarly, a useful custom floating
point format, with 5 exponent and 6
mantissa bits for example, may
provide the designer with up to 113
addition or 85 multiplication modul es,
al aso complete with full format
handling functionalities, on the same
FPGA
8-FutureWork

Many of the approaches used by the
synthesis framework presented in this
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work make use of simple methods
and agorithms. However, this first
version of the synthesis framework is

dedicated to present the basic
methodology for a new conceptual
synthesis methodol ogy.

Optimizations of these methods are
possible but have been left for future
work.
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Table (1)

operand 1 | Operand 2 | Sum
41BA3C57 | 4349C776 | 43610F01

Table(2) Operator synthesisresults

Format Bitwidth Area Per IC
total | exponent fraction | fp_add fp_mul | fp_add fp_mul
A0 | 8 2 5 39 46 236 200
Al | 8 3 4 39 51 236 180
A2 | 8 4 3 32 36 288 256
BO | 12 3 8 84 127 109 72
Bl | 12 4 7 80 140 115 65
B2 | 12 5 6 81 108 113 85
Co | 16 4 11 121 208 76 44
Cl |16 5 10 141 178 65 51
C2 | 16 6 9 113 150 81 61
DO | 24 6 17 221 421 41 21
D1 | 24 8 15 216 431 42 21
D2 | 24 10 13 217 275 42 33
EO | 32 5 26 328 766 28 12
E1 | 32 8 23 291 674 31 13
E2 | 32 11 20 284 536 32 17
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VHDL Entities

Module:

parameterized_adder

Entity:

entity parameterized adder is

generic

bits: integer :=0

);

port

g

--inputs

A :instd logic vector(bits-1 downto 0);
B :instd logic vector(bits-1 downto 0);
CIN :instd logic;

--outputs

S:out std logic vector(bits-1 downto 0) := (others=>'0");
COUT : out std_logic :='0'

);

end parameterized_adder;

Module:

parameterized_subtractor

Entity:

entity parameterized subtractor is
generic

(

bits: integer :=0

);

port

g

--inputs

A :instd logic vector(bits-1 downto 0);
B :instd logic vector(bits-1 downto 0);
--outputs

O: out std logic vector(bits-1 downto 0) := (others=>'0")
);

end parameterized subtractor;

Module:

parameterized_multiplier

Entity:

entity parameterized multiplier is
generic

(

bits: integer :=0

);

port

( .

--inputs

A :instd_logic_vector(bits-1 downto 0);
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B :instd logic vector(bits-1 downto 0);

--outputs

S:out std logic vector((2*bits)-1 downto 0) := (others=>'0")
);

end parameterized multiplier;

Module:

parameterized variable shifter

Entity:

entity parameterized variable shifteris
generic

(

bits: integer :=0;

select_hits: integer := 0;

direction : std logic :="'0" --O=right,1=left

);

port

¢

--inputs

| :instd logic vector(bits-1 downto 0);
S:instd logic vector(select bits-1 downto 0);
CLEAR: instd logic;

--outputs

O: out std logic vector(bits-1 downto 0)

);

end parameterized variable shifter;

Module:

delay block

Entity:

entity delay block is

generic

(

bits: integer :=0;

delay : integer :=0

);

port

( .

--inputs

A :instd logic vector(bits-1 downto 0);

CLK :instd logic;

--outputs

A DELAYED : out std logic vector(bits-1 downto 0) := (others=>'0")
);

end delay_block;
Module:
parameterized_absolute value
Entity:

entity parameterized absolute valueis
generic
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(

bits: integer :=0

);

port

(

--inputs

IN1:instd logic vector(bits-1 downto 0);
--outputs

EXC : out std_logic :="'0';

OUT1: out std logic vector(bits-1 downto 0) := (others=>'0")
);

end parameterized absolute vaue;
Module:

parameterized_priority _encoder

Entity:

entity parameterized priority_encoder is
generic

(

man_bits : integer := 0;

shift_bits: integer :=0

);

port

(

--inputs

MAN_IN :instd logic vector(man_bits-1 downto 0);
--outputs

SHIFT : out std _logic vector(shift_bits-1 downto 0) := (others=>'0');
EXCEPTION_OUT : out std logic:="0'
);

end parameterized priority_encoder;
Module:

parameterized_mux

Entity:

entity parameterized mux is

generic

(

bits: integer :=0

);

port

(

--inputs

A :instd logic vector(bits-1 downto 0);
B :instd logic vector(bits-1 downto 0);

S:instd logic;

--outputs

O: out std logic vector(bits-1 downto 0) := (others=>'0")
);

end parameterized mux;
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Module:
parameterized_comparator
Entity:

entity parameterized _comparator is
generic

(

bits: integer :=0

);

Port

g

--inputs

A :instd logic vector(bits-1 downto 0);
B :instd logic vector(bits-1 downto 0);
--outputs

A_GT B:outstd logic:="'0;
A _EQ B : outstd logic:="'0;
A LT B:outstd logic:='0
);

end parameterized_comparator;

Module:

denorm

Entity:

entity denormis

generic

(

exp_hits: integer :=0;

man_bits: integer := 0

);

port

( .

--inputs

IN1:instd logic vector(exp_bitstman_bits downto 0);

READY :instd logic;

EXCEPTION_IN :instd logic;

--outputs

OUT1: out std logic vector(exp_bitstman_bits+1 downto 0) := (others=>'0");
DONE : out std logic:="0'

EXCEPTION_OUT : out std logic:="0'

);

end denorm;

Module:

rnd_norm

Entity:

entity rnd_norm s

generic

(

exp_hits: integer :=0;

man_bits in: integer := 0;
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man_bits out : integer :=0

);

port

¢

--inputs

IN1:instd logic vector((exp_bitstman bits in) downto 0);
READY :instd logic;

CLK :instd logic;

ROUND : instd logic;

EXCEPTION_IN :instd logic;

--outputs

OUT1: out std logic vector((exp_bitstman_bits out) downto 0) := (others=>'0');
DONE : out std logic:="0'

EXCEPTION_OUT : out std logic:="0'

);

end rnd_norm;

Module:

fp_add

Entity:

entity fp_add is

generic

(

exp_hits: integer := 0;

man_bits: integer := 0

);

port

g

--inputs

OP1:instd logic vector(man bitstexp_bits downto 0);
OP2 :instd logic vector(man bitstexp_bits downto 0);
READY :instd logic;

EXCEPTION_IN :instd logic;

CLK :instd logic;

--outputs

RESULT : out std_logic vector(man_bits+exp_bits+1 downto 0) := (others=>'0");
EXCEPTION_OUT : out std logic :="0'

DONE : out std logic:="'0'

);

end fp_add;

Module:

fp_sub

Entity:

entity fp_sub is

generic

(

exp_hits: integer := 0;

man_bits: integer := 0

);
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port

( .

--inputs

OP1:instd logic vector(man bitstexp_bits downto 0);
OP2 :instd logic vector(man bitstexp_bits downto 0);
READY :instd logic;

EXCEPTION_IN :instd logic;

CLK :instd logic;

--outputs

RESULT : out std logic vector(man_bits+exp_bits+1 downto 0) := (others=>'0");
EXCEPTION_OUT : out std logic :="0';

DONE : out std_logic:="'0'

);

end fp_sub;

Module:

fp_mul

Entity:

entity fp_mul is

generic

(

exp_bits: integer :=0;

man_bits: integer := 0

);

port

( .

--inputs

OP1:instd_logic_vector(exp_bitstman_bits downto 0);
OP2 :instd_logic_vector(exp_bitstman_bits downto 0);
READY :instd logic;

EXCEPTION_IN :instd logic;

CLK :instd logic;

--outputs

RESULT : out std logic vector(exp_bits+(2*man_bits) downto 0) := (others=>'0');
EXCEPTION_OUT : out std logic :="0';

DONE : out std logic:="'0'

);

end entity;

Module:

fix2fl oat

Entity:

entity fix2float is

generic

(

fix_bits: integer :=0;

exp_bits: integer :=0;

man_bits: integer := 0

);

port
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--inputs

FIXED : instd_logic vector(fix_bits-1 downto 0);
ROUND : instd logic;

EXCEPTION_IN :instd logic;

CLK :instd logic;

READY :instd logic;

--outputs

FLOAT : out std logic_vector(exp_bits+man_bits downto 0) := (others=>'0');
EXCEPTION_OUT : out std logic :="0';

DONE : out std logic:="'0

);

end fix2float;

Module:

float2fix

Entity:

entity float2fix is

generic

(

fix_bits: integer :=0;

exp_bits: integer :=0;

man_bits: integer := 0

);

port

( .

--inputs

FLOAT :instd_logic_vector(exp_bitstman_bits downto 0);
ROUND :instd logic;

EXCEPTION_IN :instd logic;

CLK :instd logic;

READY :instd logic;

--outputs

FIXED : out std logic vector(fix_bits-1 downto 0) := (others=>'0");
EXCEPTION_OUT : out std logic :="0';

DONE : out std logic:="'0'

);

end float2fix;

VHDL Description of the |EEE Single Precision Adder

-- LIBRARIES --

-- IEEE Libraries --

library |EEE;

use IEEE.std logic 1164.dll;

use IEEE.std logic arith.all;

use IEEE.std logic _unsigned.all;
-- float

library PEX_Lib;
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entity single precision_adder is

port

g

--inputs

IN1:instd logic vector(31 downto O);
IN2 :instd logic vector(31 downto 0);
READY :instd logic;
EXCEPTION_IN :instd logic;
ROUND : instd logic;

CLK :instd logic;

--outputs

OUT1: out std logic vector(31 downto 0) := (others=>'0";
EXCEPTION_OUT : out std logic :="0';
DONE : out std logic:="'0'

);

end single_precision_adder;

architecture single precision_adder_arch of single precision_adder is
signd rdl: std logic:="'0;

signd rd2 : std logic:="'0;

signd rd3: std logic:="'0;

signd rd4 : std logic:="'0;

signd excl: std logic:="'0;

signd exc2: std logic:="'0;

signd exc3: std logic:="'0;

signd exc4 : std logic:="'0;

signd rndl : std logic:='0’;

signd rnd2 : std logic :='0’;

signd rnd3 : std logic :='0';

signd rnd4 : std logic :='0';

signd opl : std logic vector(32 downto 0) := (others=>'0");
signd op2 : std logic vector(32 downto 0) := (others=>'0");
signd sum: std_logic vector(33 downto 0) := (others=>'0");
begin

--instances of components

denorml: denorm

generic map

(

exp_hits => 8,

man_bits => 23

)

port map
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--inputs

IN1=>IN1,

READY => READY,
EXCEPTION_IN => EXCEPTION_IN,
--outputs

OUT1=> opl,

DONE => rd1,
EXCEPTION_OUT => excl
)

denorm?2: denorm

generic map

(

exp_bits=> 8,

man_bits => 23

)

port map

(

--inputs

IN1=>IN2,

READY => READY,
EXCEPTION_IN => EXCEPTION_IN,
--outputs

OUT1 => op2,

DONE => rd2,
EXCEPTION_OUT => exc2
)i

adder: fp_add

generic map

(

exp_bits=> 8,

man_bits => 24

)

port map

(

--inputs

OP1 => opl,

OP2 => 0p2,

READY => rd3,
EXCEPTION_IN => exc3,
CLK => CLK,

--outputs

RESULT => sum,
EXCEPTION_OUT => exc4,
DONE => rd4

)i

rnd_norm1: rnd_norm
generic map
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exp_bits=> 8,
man_bits in=> 25,
man_bits out => 23

)

port map

(

--inputs

IN1 => sum,

READY => rd4,

CLK => CLK,

ROUND => rnd4,
EXCEPTION_IN => exc4,
--outputs
OUT1=>0UT],

DONE => DONE,
EXCEPTION_OUT => EXCEPTION_OUT
)i

rd3 <= rd1 AND rd2;

exc3 <= excl OR exc2;
main: process (CLK)
begin
if(rising_edge(CLK)) then
rnd4 <= rnd3;

rnd3 <= rnd2;

rnd2 <= rnd1;

rndl <= ROUND;

end if;--CLK

end process;--main

end single precision_adder_arch;--end of architecture
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