Electrochemical machining one of non traditional method which is used to
machine a complex shape such as that uses the chemical reaction associated with
electric current to remove metals. In this study the ECM was used to remove the
metals from the internal hole of the workpiece (medium carbon steel) by immersing it
in electrolyte (250g of NaCl for every litter of H2O) with tool is made of brass.
The,m research focuses on the effect of the change in gap dimensions and the
currents density on the metal removal rate (MRR) and surface roughness of the
workpiece the results obtained show that increasing of gap size between the tool and
the workpiece from (1 to 3mm) leads to increase the surface roughness (46%) and
while the material removal rate (MRR) decreases (16%) at a current density (2.856
Amp/cm2). Also increasing of the current density from (2.4485 to 3.6728 Amp/cm2),
the surface roughness of the workpiece decreases (31%) while the Material Removal
Rate (MRR) increases (93.9%) at a gap size of (1mm).