Approach for Retrieving and Mining Video Clips

Dr. Ala’a H. AL-Hamami
Amman Arab University/ Jordan
Email: alaa_hamami@yahoo.com

Dr. Soukaena Hassan
Computer Science Department, University of Technology/Baghdad
Email: soukaena_hassan@yahoo.com

Dr. Mazin Samer AL-Hakeem
Computer Science Department, University of Technology/Baghdad
Email: mazin_ictc@yahoo.com

Received on: 18/10/2011 & Accepted on: 5/4/2012

ABSTRACT
Multimedia (include video, images, audio and text media) is characterized by its high dimensionality, which makes information retrieval and data mining even more challenging. This research proposes a method to build an indexes database for huge collection of video clips, to make the video retrieval and mining much more efficient and perfect that by considering similarity in both text of sound and features of frames. The proposed method has the following steps: First, isolates video motion from sound in the video clips. Second, converts the sound to text and index the result with database. Third converts video motion to shots, then select the master frame for each one and extracts the feature vector for them such as color, texture, shape and others and finally index the result with database. Fourth, combines the two resulted indexed database (Second and Third steps) into one database and make it the final and standard for both retrieval and mining.

Keywords: Video Clips, Mining, Indexed Database.

طريقة لاسترجاع وتنقيب مقاطع الفيديو

الخلاصة
تتميز الوسائط المتعددة (تشمل الفيديو والصور والصوت والنص) بأنها ذات أبعاد عالية، الأمر الذي يجعل من استرجاع المعلومات و التنقيب عن البيانات أكثر صعوبة. في هذا البحث تم اقتراح طريقة لبناء قاعدة بيانات لجامعة ضخمة من مقاطع الفيديو، بهدف جعل استرجاع مقاطع الفيديو والتنقيب عنها أكثر كفاءة من خلال النظر في التشابه في كل من الصوت وخصائص الإطارات. الطريقة المقترحة تتضمن الخطوات التالية: أولًا تجزيل حركة الفيديو عن الصوت في مقاطع الفيديو الخطوة الثانية، تحويل الصوت إلى نص وتثبيت النتيجة مع قاعدة البيانات. الخطوة الثالثة، تحويل الحركة إلى نقاط فيديو، ثم تحديد الإطارات الرئيسية لكل واحدة واسترجاع الخصائص والخصائص بالنسبة لهما، كاللون والشكل والملابس وغيرها من الخصائص، وأخيرًا تثبيت النتيجة مع قاعدة البيانات. الخطوة الرابعة، دمج قاعدة

2000

https://doi.org/10.30684/etj.30.11.14
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0/
INTRODUCTION

Currently text-based search engines are commercially available, and they are predominant in the World Wide Web for search and retrieval of information. However, demand for search and mining multimedia data based on its content description is growing. Search and retrieval of contents is no longer restricted to traditional database retrieval applications. As an example, it is often required to find a video clip of a certain event in a television studio. In the future the content customers will demand to search and retrieve video clips based on content description in different forms. It is not difficult to imagine that one may want to mine and download the images or video clips containing the presence of Mother Teresa from the Internet or search and retrieve them from a video archival system. It is even possible to demand for retrieval of a video which contains a tune of a particular song. In order to meet the demands for retrieval of audio-visual contents, there is a need for efficient solution to search, identify and filter various types of audio-visual content of interest to the user using non-text based technologies [8].

RELATED WORKS

The closely related works to our work are addressing as the following:

• Oh J. and Bandi B., [8], retrieve and mine the video clips depending on MPEG, concentrate with the metadata only which has at most the general information of the feature and keywords of sound in the related video clip. JPEG2000 is the new standard for still picture compression and has been developed in such a way that metadata information can be also stored in the file header for access and retrieval by users as well. All these developments still influence effective mining of video data.

• Minami K., [3], Pfeiffer S., [4], Tonomura Y [5], Saraceno C.[6], all of them retrieve and mine the video clips depending on the words contained in the sound of the clips only without any care with the content of pictures of the video clips.

However, our work is addressing to make the video retrieval and mining much more efficient and perfect that by considering similarity in both text of sound and features of frames together.

THE PROPOSED SYSTEM

Content-based image retrieval techniques can be extended, in principle, to video retrieval systems. However, this is not very straightforward because of the temporal relationship of video frames and their inherent structure. A video is not only a sequence of pictures, it represents the actions and events in a chronological order to convey a story and represent moving visual information [1, 2]. For that the following algorithm has been proposed for indexing video clips in a database to be suitable and efficient for retrieval and mining.
Input: Huge no. of video clips.
Output: Indexes database for all the video clips which provide efficient retrieval and mining.

Step one: Take the next video clip.
Step two: Separate the video motion from the sound along of the clip: this made easy by recording the video motion when muting the sound in the video clip and then record the sound only without the video motion, so we will have the video motion separated from video sound.
Step three: Take the sound of the clip then do the separation of music, voice, silence and noise: by using frequency spectrum, relative loudness and other parameters of traditional sound analysis, it is possible to filter the sound track into music, voice. By using similar techniques, it is even possible to segment the music stream into different beats. These are currently available as either commercial products or research prototypes [3, 4, 5, 6].
Step four: Take the separated voice in the previous step, then translates the voice to text, by applying speech recognition techniques on the sound, these are currently available as either commercial products or research prototypes [6, 7] (in this paper we use Audioomine System [7] as speech recognition technique). After extracting the words keep them to index the video with its corresponding words which composed the sound see figure (1) and figure (2).

Sounds from Video Clip Database

Apply Speech Recognition (Audioomine) on the Sound

Generation

Sound Metadata in Video Clips

Figure (1) Build Indexes Database for the Sounds.

<table>
<thead>
<tr>
<th>Video Clip ID</th>
<th>Words Corresponding its Sound</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Every night in my dream I see</td>
</tr>
<tr>
<td>V2</td>
<td>..................................</td>
</tr>
<tr>
<td>V3</td>
<td>..................................</td>
</tr>
<tr>
<td>V4</td>
<td>..................................</td>
</tr>
<tr>
<td>.</td>
<td>..................................</td>
</tr>
<tr>
<td>.</td>
<td>..................................</td>
</tr>
</tbody>
</table>

Figure (2) The Indexes Database which Contains VideoClip and its Corresponding Words.
Step five: After separating the video motion from sound, then take videomotion and first temporarily segmented into video shots. A shot is a piece of a video motion (a group of frames or pictures) where the video content from one frame to the adjacent frames does not change abruptly. One of these frames in a shot is considered to be a master frame (the selection of master frame will be depend on no. of objects so the master frame of the shot will has the maximum no. of objects). This master frame is considered to be a representative for the picture content in that shot. Sequence of master frames can define the sequence of events happening in the video clip. This is very useful to identify the type and content of the video, see figure (3).

![Image of segmentation to shot, then frames and detecting the master frame.](image)

Step six: Now collect the master frames of each video clip, since master frames are images, then we will propose that: the images in an image database are indexed-based on extracted inherent visual contents (or features) such as color features (color histogram, color coherence vector, color moment, linguistic color tag), texture, image shape and topology. The feature vector actually acts as the signature of the image, and extraction of these features depend on content-based method, [9], figure (4) represents the main architecture to build indexes database for the master frames of the video clips in each shot. Figure (5) represent the indexes database for each video clip and the corresponding master frames of that clip.
Figure (4) Build Indexes Database for the Master Frames of the Video Clips

<table>
<thead>
<tr>
<th>Video ID</th>
<th>Master frame ID</th>
<th>Color</th>
<th>texture</th>
<th>shape</th>
<th>topology</th>
<th>histo</th>
<th>mom</th>
<th>coher</th>
<th>tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>I1</td>
<td>116.84</td>
<td>122.84</td>
<td>117.84</td>
<td>116.86</td>
<td>0.87</td>
<td>0.58</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>I1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V3 V4</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure (5) The Indexes Database for each Video Clip and the Corresponding Master Frames.

Step seven: Now combine the two indexes databases (the sound and image) into one comprehensive database, see figure (6).

<table>
<thead>
<tr>
<th>Video ID</th>
<th>Words corresponding it is sound</th>
<th>Video clip ID</th>
<th>color</th>
<th>text</th>
<th>shape</th>
<th>topology</th>
<th>histo</th>
<th>mom</th>
<th>coher</th>
<th>tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Every night in my dream I see</td>
<td>I1</td>
<td>116.84</td>
<td>122.8</td>
<td>117.84</td>
<td>116.86</td>
<td>0.87</td>
<td>0.58</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td></td>
<td>I2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure (6) The Final Video Clip Indexes Database.
Step eight: After completing the indexes database for video clips, now the retrieval and mining process is depicted. The query video clip is analyzed to extract the visual features (according to the features depended in the proposed indexes database) and analyze the sound to text, then these features and text are used to retrieve and mine the similar video clips from the comprehensive video clips database. Rather than directly comparing two video clips, similarity of the visual features of the query video clip is measured with the features of each video clip stored in the comprehensive database as their signatures. Often the similarity of two video clips is measured by computing the distance between the feature vectors of the two video clips. The retrieval and mining system returns the first k video clips, whose distance from the query video clips is below pre-defined threshold, see figure (7).

![Diagram](image_url)

Figure (7) Retrieve or Mine the Comprehensive Database According to the Query.

The Implementation of the Proposed System

The implementation of the proposed system has two sub programs the first one will be used if the user has the clip of retrieval and the second will be used if the user has only information about the clip he wants to retrieve. The first sub program will be as the following: the initial main window of the implementation will be shown in figure (8).

2005
Figure (8) The Initial Main Window.

Figure (8) has three commands, when the first one is clicked then figure (9) will appear to enable the user for loading the desired video clip, see figure (9).

Figure (9) the Window Responsible to Loading the Query Represented by Video Clip

After loading the desired video clip by the user, the user must click the second command to analyze the desired video clip and present the results of that clip, as shown in figure (10).
The last step is to click the third command to take the results of the analyzed clip and compare them to all analyzed clips in the comprehensive databases to display the similar clips, see figure (11).

The second sub program will be as the following: the main window of the implementation will be shown in figure (12). In this figure the user will enter the keyword of the sound of the video clips he wants in the first text box and in the second text box will enter all the Meta data he knows about the desired clips. Finally, by pressing the command below both text boxes then the mined and the retrieved clips will be displayed.
CONCLUSIONS

The following items represent the important conclusion which is drawing through the development of our proposed system.

1. Consider both sound and video motion of video clips in building the indexed database of video clips make the retrieval and mining of the video clips much more efficient than using metadata of video only or depending on the words contained in the sound of the video clips only as shown in the work [3, 4, 5, 6] which care with the words of the sound only and cancel the features of pictures which represent crucial point in retrieve and mine the video clips; and the work [8] which depend on it is retrieve only on the general features and keywords mentioned in metadata and that surely un sufficient to optimize the mining.

2. Segmenting the video motion in to shots then each shot contains no. of frame and finally select a master frame for each shot by taking the one has maximum no. of objects. This will give optimization for the selection since that the selected frame will be ensured that has all the objects in the shot.

3. Taking the color features (color histogram, color coherence vector, color moment, linguistic color tag), texture, image shape and topology will give the optimized signature of the frame, that will make the retrieve and mine process perfect.

4. Build a comprehensive database will unify the search process with one database for both sound and video motion.
REFERENCES