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ABSTRACT 
An adaptive neural controller to control on flutter in 3-D flexible wing is 

proposed. The aeroelastic model was based on the coupling between structure-of the 
equivalent plate (wing) and the aerodynamic model that is based on a hybrid unsteady 
panel methodTime domain simulations were used to examine the dynamic aeroelastic 
instabilities of the system (e.g. the onset of flutter and limit cycle oscillation). The 
structure of the controller consists of two models namely modified Elman neural 
network (MENN) and feedforward multi-layer Perceptron (MLP). The MENN model 
is trained with off-line and on-line stages to guarantee that the outputs of the model 
accurately represent the plunge motion of the wing and this neural model acts as the 
identifier. The feedforward neural controller is trained off-line and adaptive weights 
are implemented on-line to find the generalized control action (function of addition 
lift force), which controls the plunge motion of the wing. The general back 
propagation algorithm is used to learn the feedforward neural controller and the 
neural identifier. The simulation results show the effectiveness of the proposed 
control algorithm; this is demonstrated by the minimized tracking error to zero 
approximation with very acceptable settling time. 

Keywords: Aeroelasticity, Flutter, Adaptive Control, Neural Networks. 
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لقد تم تأھی ل نم وذج . )MLP(و بیرسبترون متعدد الطبقات  )MENN(الشبكة العصبیة المحسنة لألمن
)MENN(   ف  ي م  رحلتین ھم  ا مرحل  ة الخ  ط المغل  ق ومرحل  ة الخ  ط المفت  وح لض  مان تط  ابق مخ  رج

. عرفالنموذج العصبي مع مخرج منظومة الجناح وھو الحركة العمودیة لتكوین النموذج العصبي الم
تم تأھیل المسیطر العصبي الأمامي من خلال الخط المغلق ث م ت م تح دیث الأوزان لھ ذا المس یطر م ن 

المطلوب للسیطرة على ) الذي ھو دالة قوة رفع إضافیة(خلال الخط المفتوح لإیجاد فعل المسیطر العام
انت نت ائج المحاك اة لھ ذا ك. تم استخدام خوارزمیة الانتشار الخلفي لتأھیل النموذجین.الحركة العمودیة

 .المسیطر العصبي فعالة من خلال تقلیل الرفرفة إلى صفر وبزمن استقرار مناسب 
 
INTRODUCTION 

he performance of aircraft is often limited by adverse aeroelastic interactions 
such as flutter. Flutter is defined as: a dynamic instability of a flight vehicle 
associated with the interaction of aerodynamic, elastic, and inertial forces. If 
flutter can be controlled at cruise speeds, lighter wings can be designed and 
consequently more efficient airplanes. It is therefore, in the aircraft designer’s 

best interest to design innovative ways in which flutter can be controlled without 
making the resulting structure too heavy. 

Nowadays the researchers pay pronounced attention to the control of flutter in 3-D 
wing model, while earlier published works were often catered for the control of 
flutter using rigid wing model. 

Many researches in this field proposed different flutter controllers, Palaniappan, et 
al. [1] developed a feedback algorithm for the control of flutter. The actuators are jets 
in the walls through which there is a small mass flow, either by way of blowing or 
suction. Afkhami and Alighanbair [2] presented nonlinear controller to control flutter. 
Integral-input-to-state stability concept is utilized for the construction of a feedback 
controller. Haiwei and Jinglong [3] proposed the robust flutter analysis of a nonlinear 
2-D wing section with structural and aerodynamic uncertain using μ-method. The 
parametric uncertainty was adopted to describe the uncertainties in structure and 
aerodynamics.  

Recently, the intelligent algorithm like neural networks and fuzzy were introduced 
in aeroelastic filed as controller or flutter prediction device. Melin and Castillo[4] 
combined adaptive model-based control using neural networks with the method for 
modeling using fuzzy logic, and fractal theory to obtain a new hybrid neuro-fuzzy-
fractal method for control of nonlinear dynamic aircraft. The adaptive controller can 
be used to control chaotic and unstable behavior in aircraft systems. Chen, et al. [5] 
presented an approach using artificial neural networks (ANN) algorithm for 
predicting the flutter derivatives of rectangular section models without wind tunnel 
tests. Marques et al. [6] presented an active aeroelastic control strategy for vibration 
suppression of a flexible smart non-linear wing based on fuzzy logic. The finite 
element method has been used to model the wing structural-dynamics. The vortex-
lattice method has been used for the unsteady aerodynamic model. The fully coupled 
fluid-structural interaction model [7] is used in the present work. 

In this work the designated model is adopted to predict the flutter condition in the 
wing. A hybrid panel-discrete vortex unsteady method combined with the numerical 
lifting line method is used to describe the aerodynamic model. While the equivalent 
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plate technique [8] which relays on a solved plate equation by an assumed mode 
method is used to represent the structure wing model.  

The contribution of the present work is the utilization of a relatively simple 
approximation neural network to identify the posture of the fully coupled fluid-
structural interaction wing system and to design an adaptive neural controller. 

 
FLUTTER ANALYSIS 

Flutter is a self-feeding and potentially destructive vibration where aerodynamic 
forces on an object couple with a structure's natural mode of vibration to produce 
rapid periodic motion. In flutter condition the wing undergoes plunge or pitch or both 
motions during the flight [9].  

Time domain simulation are used to examine the dynamic aeroelastic instabilities 
of the system (e.g. the onset of flutter and limit cycle oscillation (LCO)) as done in 
Ref [10]. The simulation is performed by solving fluid-structural interactions problem 
for different velocities and initial conditions. It is well known that the initial 
conditions may affect the stability of a system; however this effect is not found in 
present case study. It was found that LCO appear at U=153m/sec and never appears at 
speed less than it what ever the initial conditions. Therefore the flutter speed is 
153m/sec and the proposed controller must give a good performance at speed higher 
than that value (unstable region).  

Figures (1, 2, 3 and 4) show the generalized displacement responses at speed 
120,135, 153 and 160 m/sec respectively. It is clear at velocity 120 m/sec and below 
the system is stable and does not need controller at this range of velocity. But at 
velocity of 135 m/sec the stability becomes less and decay time becomes more.  
Unstable responses appear at velocities above 153 m/sec. This behaviour is clear at 
velocity 160 m/sec, as shown in figure (4). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1): Time history of generalized displacement  
of the wing at 120 m/s speed . 
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Figure (2): Time history of generalized  
of the wing at 135 m/s speed . 

Figure (3): Time history of generalized displacement  
of the wing at 153 m/s speed ,flutter condition . 
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ADAPTIVE NEURAL CONTROL METHODOLOGY 

The approach to control wing motion depends on the available information about 
the system and the control objectives. The wing system is considered as modified 
Elman recurrent neural networks model. The first step in the procedure of the control 
structure is the identification of dynamics of wing system from the input-output data. 
Then a feedforward neural controller is designed using feedforward multi-layer 
Perceptron neural network to find controller action that control on the plunge wing 
motion. 

The proposed structure of the adaptive nonlinear neural controller can be given in 
the form of block diagram as shown in figure (5). It consists of: 
1- Neural Network Identifier of Wing. 
2- Feedforward Neural Controller. 
In the following sections, each part of the proposed controller will be explained in 
details. 
 
WING SYSTEM NEURAL NETWORK IDENTIFIER 

The modified Elman recurrent neural network model is applied to construct the 
wing system neural network identifier as shown in figure (6) [11]. The nodes of input, 
context, hidden and output layers are highlighted. The network uses two 
configuration models, series-parallel and parallel identification structures, which are 
trained using dynamic back-propagation algorithm. The structure shown in figure (6) 
is based on the following equations [11]: 

 
}),(),({)( VbbiaskVCkGVHFk oγγ =                               … (1) 

Figure (4): Time history of generalized displacement 
 of the wing at 160m/s speed. 
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}),({)1( WbbiaskWLkO γ=+                                                  … (2) 

 
   Where VH,VC and W are weight matrices, Vb  and Wb  are weight vectors and F is a 
non-linear vector function. The multi-layered modified Elman neural network, shown 
in figure (6), is composed of many interconnected processing units called neurons or 
nodes. 
The network weights are denoted as follows: 
VH : Weight matrix of the hidden layers. 
VC : Weight matrix of the context layers. 
Vb : Weight vector of the hidden layers. 
W : Weight matrix of the output layer. 
Wb : Weight vector of the output layer. 
L : Denotes linear node. 
H : Denotes nonlinear node with sigmoidal function 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

Figure (5): The proposed structure of the adaptive nonlinear 
 Neural Controller for the wing. 
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In order to improve the ability of network memory, self-connections, with fixed 
value λ , are introduced into the context units of the network to give these units a 
certain amount of inertia [10]. The introduction of self-connections in the context 
units increases the possibility of modelling high-order systems by Elman network.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure (6): The Modified Elman Recurrent Neural Networks  
Acts as the plunging motion of the wing. 
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The output of the context unit in the modified Elman network is given by [11]: 
 

)1()1()( −+−= kkk c
o
c

o
c ργλγγ                                             … (3) 

 
where )(ko

cγ  and )(kcγ are the outputs of the context and hidden units respectively. 
λ  is the feedback gain of the self-connections and ρ is the connection weight from 
the hidden units (jth) to the context units (cth) at the context layer.  The value of λ  and 
ρ  are selected randomly between (0 and 1). 

To explain these calculations, consider the general jth neuron in the hidden layer. 
The inputs to this neuron consist of an i– dimensional vector, where i is the number of 
the input nodes. Each of the inputs has VH and VC weights associated with it. 
Vb is the weight vector for the bias input that is set equal to -1 to prevent the neurons 
quiescent. The first calculation within the neuron consists of calculating the weighted 
sum jnet  of the inputs as [11 and 12]: 

j

C

c

o
cjc

nh

i
ijij VbbiasVCGVHnet ×+×+×= ∑∑

== 11
γ                                         … (4) 

 
Where j.is the number of the hidden nodes, c is the number of the context nodes 

and G is the input vector. The output of the identifier is the modelling plunge motion 

in generalized form and is defined as:   mq  
The learning algorithm will be used to adjust the weights of dynamical recurrent 
neural network. Dynamic back propagation algorithm is used to train the Elman 
network. The sum of the square of the differences between the desired output q and 
neural network identifier output mq is given by equation (5). 
 

∑
=

−=
np

i
mqqE

1

2)(
2
1                                                                            … (5) 

 
where np is the number of patterns. 
The connection matrix between hidden layer and output layer is kjW .  
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k

k

k

k

m

mkj
kj W

net
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o
kq

kq
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W
EkW

∂
∂

∂
∂

∂
+∂

+∂
∂

−=
∂
∂

−=+∆
)1(

)1(
)1( ηη                           … (6) 

where η  is learning rate. 
 

kjkj ekW ××=+∆ γη)1(                                                                     … (7) 
 

)1()()1( +∆+=+ kWkWkW kjkjkj
                                                            … (8) 
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The connection matrix between input layer and hidden layer is jiVH  

ji

j

j

j

j

k

k

k

k

m

mji
ji VH

net
net

net
net
o

o
kq

kq
E

VH
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∂
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∂
∂

∂
∂

∂
∂

∂
+∂

+∂
∂

−=
∂

∂
−=+∆

γ
γ

ηη
)1(

)1(
)1(              … (9) 

 

∑
=

×′×=+∆
K

k
kjkijji WeGnetfkVH

1
)()1( η                                                             … (10) 

 
)1()()1( +∆+=+ kVHkVHkVH jijiji
                                                                   … (11) 

 
The connection matrix between context layer and hidden layer is jiVC .  
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∑
=

×′×=+∆
K

k
kjk

o
cjjc WenetfkVC

1
)()1( γη                                                           … (13) 

 
)1()()1( +∆+=+ kVCkVCkVC jcjcjc
                                                                … (14) 

 
 
FEEDFORWARD NEURAL CONTROLLER 

The Feedforward Neural Controller (FFNC) is essential to stabilize the tracking 
error of the wing system when the response of the wing is drifted from the desired 
condition during transient state and kept the steady-state tracking error at zero. The 
controller generates controller action that minimizes the cumulative error between the 
desired condition and the output response of the wing. The FFNC is supposed to learn 
the adaptive inverse model of the wing with off-line and on-line stages to calculate 
wing's reference input control action and will keep the wing stable without flutter 
state in the presence of any disturbances or dynamics parameters changing. 

To achieve FFNC, a multi-layer Perceptron model is used as shown in figure (7) 
[13]. The network notations are as follows: 
Vffc : Weight matrix of the hidden layers. 
 

bffcV : Weight vector of the hidden layers. 
 
Wffc : Weight matrix of the output layer. 
 

ffcWb : Weight vector of the output layer.  
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To explain these calculations, consider the general ath neuron in the hidden  
layer shown in figure (7). The inputs to this neuron consist of an n–dimensional 
vector, where n is the number of the input nodes. Each input has an associated weight 
of Vffc . The first calculation within the neuron is to calculate the weighted sum of the 
inputs, anetc  as [13, 14 and 15]: 
 

a

nhc

a
nana VbffcbiasZVffcnetc ×+×= ∑

=1

                                … (15) 

 
 
     Where nhc is the number of the hidden nodes and 
 

)]2();1();1();();1();([ −−−−= mQmQmqmqmemeZ ccmmn . 
 
Next, the output of the neuron 

ah is calculated as the continuous sigmoid function of 
the anetc  as: 

)( aa netcHc =γ                                                                    … (16) 
 

1
1

2)( −
+

= − anetca e
netcH                                                     … (17) 

Figure (7): The Multi-Layer Perceptron Neural Networks  
of the Feedforward Neural Controller[13]. 
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Once the outputs of the hidden layer have been calculated, they are passed to the 

output layer. 
In the output layer, the linear neuron is used to calculate the weighted sum netco 

of its inputs, which are the output of the hidden layer as: 
 

b

nhc

a
abab WbffcbiascWffcnetco ×+×= ∑

=1

γ                                      … (18) 

 
where 

baWffc  are the weights between the hidden neuron acγ  and the output neurons. 
Then the sum ( bnetco ) will be passed through a linear activation function of slope 1; 
another slope can be used to scale the output, as: 
 

)( bb netcoLOc =                                                                             … (19) 
 

The outputs of the feedforward neural network controller represent control action. 
The training of the feedforward neural controller is performed off-line as shown in 

figure (8). And adaptive weights are adapted on-line. It depends on the posture neural 
network identifier to find the wing Jacobian through the neural identifier model. This 
approach is currently considered as one of the better approaches that can be followed 
to overcome the lack of initial knowledge. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (8): The feedforward neural controller structure  
for wing model. 
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The dynamic back propagation algorithm is employed to realize the training the 
weights of the feedforward neural controller. The sum of the square of the differences 
between the desired posture oq and neural network posture mq is: 

 

∑
=

−=
npc

i
mo qqEc

1

2)(
2
1                                                         … (20) 

 
 
Where: npc is number of patterns. 

To achieve equation (20) a modified Elman neural network will be used as posture 
identifier. This task is carried out using an identification technique based on series-
parallel and parallel configuration with two stages to learn the posture identifier. The 
first stage is an off-line identification, while the second stage is an on-line 
modification of the weights of the obtained wing neural identifier. The on-line 
modifications are necessary to keep tracking any possible variation in the dynamic 
parameters of the wing system. Back Propagation Algorithm (BPA) is used to adjust 
the weights of the posture neural identifier to learn dynamic of the flexible wing 
system by applying a simple gradient decent rule. 
 
The connection matrix between hidden layer and output layer is 

baWcont .  
 

ba

b

b

b

b

c

c

m

mba
ba Wffc

netc
netc
oc

oc
kQ

kQ
kq

kq
Ec

Wffc
Ec

kWffc
∂
∂

∂
∂

∂
∂

∂
+∂

+∂
∂

−=
∂

∂
−=+∆

)(
)(

)1(
)1(
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                                                                       ... (22) 
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γ

γ
                            ... (23) 

 
For linear activation function in the outputs layer and nonlinear activation 

functions in the hidden layer for neural network identifier the equation (23) becomes 
as follows: 

 

∑ ∑
= =

′=
∂

+∂ nh

j

K

k
kjjbj

c

m WVHnetf
kQ

kq
1 1

)(
)(

)1(                                           ... (24) 

 
Substituting equations (22 and 24) into equation (21), )1( +∆ kWffcba

 becomes: 
 

)))1((()()1( 1
1

jm

nh

j
jbjaba WkeqVHnetfckWffc +′×=+∆ ∑

=

ηγ                                       ...  (25) 

 
)1()()1( +∆+=+ kWffckWffckWffc bababa
                                     … (26) 
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The connection matrix between input layer and hidden layer is 

anVffc . 
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ηη                                     ... (28) 

 
Substituting equations (22 and 24) into equation (28), )1( +∆ kVffcan

becomes: 
 

)))1((()()()1( 1
1 11

jm

nh

j

I

i
jij

B

b
baanan WkeqVHnetfWffcnetcfZkVffc +′′=+∆ ∑ ∑∑

= ==

η          ... (29) 

 
The B and I are equal to one because there is one output in the feedforward neural 

controller. 
 

)1()()1( +∆+=+ kVffckVffckVffct ananan                                                  ... (30) 
 

Once the feedforward neural controller has learned, it generates the control action 
to keep the output of the wing at reference value and to overcome any external 
disturbances during motion.  
 
RESLUTS AND DISCUSSION 

The proposed controller is verified with computer simulation using Matlab 
program. Because of the vast number of the recorded data that resulting from the 
solution structure -fluid interaction and to learn the neural network algorithm these 
date in easy way and reasonable time in personal computer that has limited memory, 
first generalized displacement is used only to modulate the wing system.       

Also the first generalized displacement has predominate effects on aeroelastic 
wing behaviour than others generalized displacement. 

 The simulation is carried out by tracking a desired plunging before, through and 
after flutter condition.  

The first stage of operation is to set the position (plunging motion) neural network 
identifier. This task is performed using series-parallel and parallel identification 
technique configuration with modified Elman recurrent neural networks model. The 
identification scheme of the wing system is needed to input-output training data 
pattern to provide enough information about dynamics wing model to be modelled. 
This can be achieved by injecting a sufficiently rich input signal to excite all process 
modes of interest while also ensuring that the training patterns adequately covers the 
specified operating region. A hybrid excitation signal has been used for the wing 
model.  

The training set is generated by feeding a pseudo random binary sequence (PRBS) 
signals, with a sampling time of 0.0005 second, to the model and measuring its 
corresponding outputs, position (plunging motion) . Back propagation learning 
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algorithm is used with the modified Elman recurrent neural network of the structure 
6-8-8-1. The number of nodes in the input, hidden, context and output layers are 6, 8, 
8 and 1 respectively as shown in figure (6). 

A training set of 2000 patterns has been used with a learning rate of 0.1 and 
variable speed inputs U= [135 153, 160] m/sec. After 5439 epochs, the identifier 
output of the neural network, plunge motion is approximated to the actual outputs as 
shown in figure (9).  

The testing set is generated by difference feeding a PRBS signals as shown in 
figure (10), and it is applied to the system. Figure (10) compare the time response of 
the parallel mode output with the actual plant output, and there is excellent 
identification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure (9): The response of the neural network  
Identifier with the actual flexible wing 

Model output for the learning set. 
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Figure (10): The response of the neural network 
 Identifier with the actual flexible wing model  

output for the testing set. 
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The controller performance is simulated at three values of the flight speed 
(135,153,160 m/sec) which in unstable region and at different initial conditions of 
plunging motion. Figure (11) shows the closed loop responses for the controlled wing 
system. The controller reach the requirements and the closed-loop simulation 
obtained is stable .The over shoot and settling time increase slightly with increasing 
of the velocity. Also the oscillation during the transient period appears with 
increasing of the velocities, but its amplitude is small and converge to desired 
condition very quickly with settling time 0.7sec at high velocity U=153m/sec. 

Also in the figure (11) can be seen the responses of the controller action (function 
of additional lift) at U=135m/sec, 153 m/sec and 160m/sec.The controller action in 
real may represent any external controller device like control surface, jets in the walls 
through which there is a small mass flow, either by way of blowing or suction and 
smart wing that change the shape of the airfoil of the wing to change the lift.  

The values of the initial conditions are varying to make the stable or unstable, so 
the present controller performance is tested at different initial conditions as shown in 
figure (12). When the initial values of plunging increase the over shoot, the 
oscillation and setting time increase during the transient period. The present 
controller can give acceptable performance and reaches to desired condition at very 
short setting time about 1sec at large initial condition. 
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Figure (11): System responses with controller at different speed.  
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CONCLUSIONS 

Time domain simulations are used to predict the dynamic aeroelastic instabilities, 
find the flutter speed and LCO for model of a flexible wing with fully coupled fluid-
structural interaction. The adaptive neural control methodology for nonlinear flutter 
wing is presented in this paper. The proposed controller consists of two parts: 
(plunging motion) neural network identifier and feedforward neural controller. The 
control scheme minimizes the cost function of tracking errors. It uses two models of 
neural networks in the structure of the controller, multi-layer Perceptron and modified 
Elman neural network. They are trained off-line and adapted on-line using back 
propagation algorithm with series-parallel and parallel configurations to guarantee 
that the model outputs of the neural network match those of the wing model outputs.  

The simulation results show that the proposed controller has the capability to 
generate smooth and suitable controller action commands without sharp spikes. 
Moreover, it has the capability of compensating any different velocities and from any 
initial conditions sudden change of the aeroelastic system .Therefore, the proposed 
adaptive neural control methodology can be considered capable of effectively 
eradicating the tracking errors for the flexible wing model. 

 Simulation results show that the proposed controller is robust and effective in 
comparison with the controller in [2] in terms of fast response with minimum settling 

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 G
en

er
liz

ed
 d

is
pl

ac
m

en
t 

Time (sec)

 

 
qi=0.1
qi=0.15
qi=0.2

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 D
ef

le
ct

io
n 

 (m
) 

Time (sec)

 

 
qi=0.1
qi=0.15
qi=0.2

Figure (12): System responses with controller at different initial condition 
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times and minimum tracking error until in flutter condition until when it use in 
unstable region. 
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