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ABSTRACT

In this paper, the energy dispersion relation has been calculatedertain
configuration of single wall carbon nanotubes (SWNT) with respect to the wave vector
(K). Thethree types of SWNT are armchair, zigzag, and chiral, so the energy dispersion
relation for them are calculated for different chiral vectors. Taking two chiral vectors for
each type of CNT, so (7), (10, 0) for armchair, for zigzag (70), (10, 0), and (0,5),
(20,5) for chiral .
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INTRODUCTION
n 1991 Sumio lijima of NEC discovered carbon nanotubes[1,2]. They aref ¢he
I most commonly mentioned building blocks of nanotechnology. The high aspect ratio
is the main part that makes some of its property improved. The carbon nanotubes
have | ong cylindrical structure with diameter
make their aspect ratio as high as 1000 or larger. There are many types of carbon
nanotubes like single wall, double wall, and multll. Single wall carbon nanotube
(SWNT) are proposed to consist of a seamless cylinder of graphene sheet capped by
hemisphecal ends composed of hexagons[3].1t is represented by the pair of i{lditgs
called the chiral vector as shownhigure (1), Ci=na+ma. Theintegersn andm denote
I,
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the number of unit vectors along two directions in the honeycomb crystal lattice of a
grapheme. Iim=0, the nanotubes are called "zigzag"n#m ,the nanotubes are called

"armchair". Otherwise, they are called "chiral". From those two basic parameters of
carbon nanotube, many others nanotube geometrical parameters can be derivelde Since t

chiral vector gives the circumference of nanotube, the diameter of nanotube can be
obtained as [8]
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Figure (1) schematic of a twedimensional graphemesheet[5] .

THEORY

The essence of the various calculations of the 1D electronic band structure is based
on a tight binding or Hiickel calculation that neglects curvature of the nanotubes [6].
Since atomic orbitals are mostly local; the wave functions in the lattice can be
represented by a linear combination of the mostly localized orbital of the atom taking into
account two carbon atom basis of the lattice, the wave function may be model as :
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Wheren denote the number of Bloch functi@) jare coefficients that must be found
which weigh the Bloch function to the eigenfunction. The corresponding energy

eigenvalue of eigenfunction statés,; ar e wave functions that sati sf

- -
are the waveforms of the atomic carbgqorbital and carbon coordinatd, and Ry

are basis atom positions translated throtinghlattice. The based on Schrédinger equation
solution for energies and coefficients that determine the wave function is:

= E (W& ¢ (4)

where Hrand are called transfer integral matrices and overlap integral matrices
respectively, which are defined by[9]

Hy =01 )5Sy = by )0 ji= AB) é (5)
Because we have identical atoms in the basis set, we can take
Haa=Hge=0 e (6)
and
H,. =H:, :t.f(I6 =t(e"/ 3 + gkl 3 cosk,a/2)) é (7)

wherek,, k is the wave vector along the direction of carbon nanotube axes. The transfer
integral between the two neighboring atomic orbital is given by value t:

t=(y JHys) é (8)

By taking the determine of equation Schroédinger and solb%gmd Eas given above,
the eigenvalueBy are obtained as a function d?o andw(ﬂ].

E(k)=—2_ é (9)
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where

@)—'IfE|2—'I1+4 (“E“x"‘] {5"—“‘]+4 25% ¢ a0
w =4 (k) =4 cos 5 cos |~ cos(zj é (10)

wheng;,, = 0, the dispersiomelation becomes
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wherea is the lattice constant.

RESULTS AND DISCUSSION

The energy dispersion relation of CNT was calculated by using MATLAB for the three
types of nanotubes (armchair, zigzag, achiral). For the ha@imcarbon nanotubes The
resulting calculated 1D energy dispersion relatigr(g) for the (7, 7) armchair nanotube
(Nx = 7) are shown in Figre (2), where we see 8 dispersion relations for the conduction
bands and an equal number for the valence bamdsath case, two bands are
nondegenerate and six are doubly degenerate , leading to 14 levels ircasach
consistent with the 14 hexagons around the circumference of the (7, 7) carbon nanotube.

Efy eV

Figure (2) Onedimensional enepgy dispersion relations for armchair
(7,7) carbon nanotube
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For all armchair tubules, the energy bands show a large degeneracy at the zone
boundary, wheréa,= ~ . The val ence andre(2)orosdatgkpoimn bands i
that is two thirds of the distance frdim=0to the zone boundary Bt =,. Thé a@ossing
takes place at the Fermi level and the energy bands are symmettko/idues. Because
of the degeneracy point between the valence and conduction bands at the band crossing,
the (7, 7) carbon nanotube will exhibit metallic conduction at finite temperatures, because
only infinitesimal excitations are needed to excite carriers into the conduetizh Bhe
(7,7) armchair carbon nanotube is thus a P semiconductor. Similar as showing
Figure (3) that deal with energy dispersion relation for (10,10) armchair carbon
nanotubes.
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Figure (3) Onedimensional energy dispesion relations for armchair
(10,10) carbon nanotube

For the case otnergy dispersion relations faigzag carbon nanotube of (7,0) in
Figureg(4) , the number of valance and conduction bands is 8, with 2 nondegenerate levels
and 6 double degeneraterdds yielding a total of 14 statems expected from the number
of hexagons for a circumferential ring in the 2D honeycomb lattice. Most important is the
band degeneracy that occurs at k = 0 between the doubly degenerate valence and
conduction bands
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Figure(4) One-dimensional energy dispersion relations for zigzag
(7,0) carbon nanotube.

Figure (5) show the illustrative purposes the normalized energy dispersion relations for
zigzag (10,0).

Edui el

Figure(5) One-dimensional energy dispersion relations for zigzag
(10,0) carbon nanotube.
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For the third type of CNT which is achiral of the energy dispersion relation was
calculated by taking the range ké,=- ~ : . The energy dispersion relation for (10,5)
shown in fig.(6) have 70 energy band and for (20,5) that showgume (7) is also have
70 energy band because (10,5) is semiconductor carbon nanetmbme(i )dand (20,5)
is metal carbon nanotubegin-m=3d). So the number of energy dispersion relation of
any chiral isN-1, whereN is the number of hexagons/cell
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Figure(6) One-dimensional energy dipersion relations for chiral
(10,5) carbon nanotube.
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Figure(7) Onedimensional energy dispersion relations for chiral
(20,5) carbon nanotube.
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