The main objective of this work is to study the effect of adding plastic fibers on Lightweight Aggregate Foamed Concrete (LWAFC) using mix proportion of 1:2.6:0.4 by volume (cement: fine Porcelanite: coarse Porcelanite) with 2% foaming agent by weight of water, and using sand as a partial and total replacement of local Porcelanite aggregate in that mix.
The properties of lightweight aggregate foamed concrete reinforced with different percentages of plastic fiber (0.5, 0.75, and 1% by volume) were studied. Compressive strength, splitting tensile strength, flexural strength, dry density, initial surface absorption, water absorption, ultrasonic pulse velocity, acoustic impedance, and impact resistance tests were conducted on mixes at ages of 7, 28, and 60 days.
The results showed a significant increasing in impact resistance, splitting tensile strength, and water absorption 34.55%, 4.2%, 326%, and 27.3% respectively. While the results indicated that the compressive strength, ultrasonic pulse velocity, dry density and acoustic impedance of the composites were reduced when the crimped plastic fiber volume fraction increases. The percentage of reduction of these properties was 15%, 11.1%, 6.23%, and 12.55% respectively.