The lateritic soil that has high content of iron oxides and aluminum hydroxides and low proportion of silica is widespread in the tropical and semi-tropical countries. Lateritic soil as available materials in these areas utilized in different civil engineering applications as roads, canals, earth dams, railways, building, … etc. These applications are depending in a majority on soil classification in design the construction on this soil type. One of the important parameters in classification of soil is an Atterbage’s limits are used in definition of soil type and its strength. Due to increase in population caused an increase in construction to demand the facilities of this growth, therefore the desired soil decrease depend on used and the undesired soil available. Soil stabilization utilized to improve the undesired soil properties by a different technique to achieve the design requirement. Chemical stabilization becomes one of the best solution to soil problems depend on economic and time save. New chemical soil stabilization used is named (NBT II) in this study to exam the effect on plasticity soil properties. Different percentages and different curing time test conducted on lateritic soil to evaluate the range of effect and also examined the effect of plasticity on dry density. The results show decrease in liquid limit with increase in NBT II and then beginning to increase with stabilizer percentage increase the reduction about 11% at 28 days curing, plastic limit increase about 6% at the same time and plasticity index decrease 80%. The results also show the inverse relationship between maximum dry density and plasticity index.