Authors

Abstract

Gypseous soils as any other soils deform under loading, this deformation differs greatly between its dry state and its soaked state. This deformation also differs when the loading is applied with eccentricity.
An experimental work was conducted on a square footing model (100 mm  100 mm) above gypseous soil 450 mm thick. Loading was applied at the center of the footing (e/B = 0) and at an eccentricity of (e/B = 0.05, 0.1, 0.15, 0.2) for its dry state and its soaked state. Settlement was obtained at the center and at the base soil of the footing for each state.
The data obtained was normalized and a proposed surface was obtained for each of the two states (dry and soaked) and at two places (center and edge). Four proposed equations were obtained represented four cases of research i) Dry center, ii) Dry edge, iii) Soaked center, and iv) Soaked edge. The four equations showed very good agreement with the data obtained from the experiment.
Artificial Neural Network model was also used to obtain a neural network representing the proposed surface for the abovementioned four cases and also a very good agreement was obtained.
It is concluded that a proposed surface for the central and eccentric loading on square footing for gypseous soil showed a good agreement with the experimental data and therefore may be used for settlement prediction.

Keywords