
 2013 , 3Eng. & Tech. Journal, Vol.31, No.

381

https://doi.org/10.30684/etj.31.3B.11

2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Design of Software Approach for Speeding up Addition

Arithmetic Operation

Imad Matti Bakko

Al Mamoon University College, Computer Scince Department/Baghdad

Email:emad_matti@yahoo.com

Received On: 17/9/2012 & Accepted On: 10/1/2013

ABSTRACT

This paper presents a new method to perform arithmetic addition operation on

numbers in a faster way in comparison with the exist one on computers.

The proposed method builds a new architecture for the Adder Circuit in the

CPU, which does not perform any carry operations. In fact, there is no need for a

waiting time to perform carrying bits from low order positions to high order

positions when adding two numbers.

The new method is successfully tested with many different examples.

Keywords: Shift, Rotate and Add operations, Carry concept, Adder Circuit, Clock

 Cycles.

 تصميم طريقة برمجية لتسريع عملية الجمع الحسابية

 الخلاصة
يقدم هذا البحث طريقة جديدة لتنفيذ عملية الجمع الحسابية على اععىداد برى رة عسىرا مقارنىة

 بما ه معتمد عليه حاليا في الحاسبات الالكتر نية.
معالج المركزي , بحيىث (في الadder circuitتقترح هذه الطريقة بناء معمارية دائرة الجامع)

 waiting(, حيىث لايعىد هنالىا حاجىة ولى نىت ل نت ىار)carry جى د فياىا لعمليىة التحميى) لا

time(عند تنفيذ التحمي)carry bit من المرتبة السابقة للعدد ول المرتبىة ال حقىة لىه ذلىا عنىد)
 جمع عددين.

 .ة عديدة مختلفةتم اختبار تفاري الطريقة الجديدة بنجاح عل امثل

https://doi.org/10.30684/etj.31.3B.11
http://creativecommons.org/licenses/by/4.0

Eng. & Tech. Journal, Vol.31, No.3, 2013 Design of Software Approach for Speeding up

 Addition Arithmetic Operation

382

INTRODUCTION

o implement the add micro operation in computer, we need registers that

hold data, and digital components that perform the arithmetic addition.

Figure (1), shows block diagram, which accepts two binary digits on it's

inputs, and produces two binary digits on it's outputs, a sum bit, and a carry bit[1].

Figure (1) block diagram of the add micro operation.

The digital circuit that generates the arithmetic sum of two binary numbers of

any lengths is called binary adder.

The binary adder is constructed with full-adder circuits connected in a cascade,

with the output carry from one full-adder connected to the input carry of the next

full-adder. Figure (2), shows the inter connections of four full-adders (FA) to

provide a 4-bit binary adder [2], [3].

Figure (2) 4–bit binary adder.

The augends bits of A and the addend bits of B are designated by subscript

numbers from right to the left, with subscript 0 denoting the low-order bit. The

carries are connected in a chain through the full-adders.

The input carry to the binary adder is C0 and the output carry is C4. The S

outputs of the full-adders generate the required sum bits [1][2].

Since the output carry from each full-adder (FA) is the input carry of the next-

high-order full-adder, hence to generate the sum S1 for example it depends on the

carry C1 generated from the previous full-adder (FA) and so forth. This situation

T

Output

s

Sum

Carry

Input

bits

A ∑

B Cout

C0 C1 C2 C3

S0 S1 S2 S3 C4

A2 B2 A3 B3 A1 B1 A0 B0

Eng. & Tech. Journal, Vol.31, No.3, 2013 Design of Software Approach for Speeding up

 Addition Arithmetic Operation

383

does not speed up the add micro operation, since there is a waiting time to generate

a carry bit as an input to the next full-adder.

THE PROPOSED METHOD FOR ADDING TWO4-BITS BINARY

NUMBERS

 22 21 20 22 21 20

Let A = (a2 , a1 , a0)2 , and B = (b2 , b1 , b0)2 ,

Be two binary numbers.

We put the digits of the number A in 3 registers, say A1, A2, and A3 in the

following manner:-

02 12 22 32 42 52 62 72

1A 0a 0 0 0 0 0 0 0

2A 0 1a 0 0 0 0 0 0

3A 0 0 2a 0 0 0 0 0

i.e. the digit a0 in the position 20 of the number A will be in the position 20 of

register A1.

The digit a1 in the position 21 of the number A will be in the position 21 of register A2.

The digit a2 in the position 22 of the number A will be in the position 22 of register A3.

We put also the digits of the number B in register say R as follows:-

02 12 22 32 42 52 62 72

R 0b 1b 2b 3b 4b 5b 6b 7b

For the sum of the number A and B, we use a register say S, and we put 0 in all

positions of it, as follows:-

02 12 22 32 42 52 62 72

0 S

0 0 0 0 0 0 0

Now, to add the numbers A and B into the sum register S, the method suggest

the truth table which is shown in Table (1).

Table (1) Suggested Truth Table for Adder Circuit.

Eng. & Tech. Journal, Vol.31, No.3, 2013 Design of Software Approach for Speeding up

 Addition Arithmetic Operation

384

1 0 +

1 0 0

Either 1 or 0 (without carry)

depending on the Algorithm presented

in this paper.

1 1

Algorithm for adding two 4-bits numbers.

Input : Two 4-bit numbers

Output : Sum of 4-bit numbers

1. START.

2. i 0.

3. DO

If the digit in the position 2i of register A1 is not equal to 1, then

begin {1}

 if the digit in the position 2i of register R is not equal to 0, then

 begin {2}

 if the digit in the position 2i of register A2 is equal to 0, then

 begin {3}

 if the digit in the position 2i of register A3 is not equal to 0, then

 begin {4}

a. shift to the left the digit in the position 2i to the

position 2i+1 of register A3.

b. put 0 instead of 1 in the position 2i of register R,

and A3.

 end {4}

 end {3}

 else

 begin{5}

a. shift to the left the digit in the position 2i to the position

2i+1 of register A2.

b. put 0 instead of 1 in the position 2i of register R, and A2.

 end {5}

 end {2}

end {1}

else

 begin {6}

 if the digit in the position 2i of register R is not equal to zero then

 begin {7}

a. Shift to the left the digit in the position 2i to the position

2i+1 of register A1.

b. put 0 instead of 1 in the position 2i of register R, and A1.

 end {7}

 else

if the digits in the position 2i of registers A2 and A3 are not equal to 0

then

Eng. & Tech. Journal, Vol.31, No.3, 2013 Design of Software Approach for Speeding up

 Addition Arithmetic Operation

385

 begin {8}

 a. put 0 in the position 2i of registers A2 and A3.

 b. shift to the left the digit in the position 2i to the

 position 2i+1 of register A1.

 c. put 0 in the position 2i of register A1.

 end {8}

 end {6}

 Add the digits in the position 2i of registers A1, A2, A3, and R.

 put the sum in the position 2i of register S.

 i = i + 1.

WHILE (i < 3)

 4. Add the digits in the position 23 of registers A1, A2, A3, and R.

 5. Put the sum in the position 23 of register S.

6. STOP.

Note1:The number in the register S will be the result of adding the numbers A and

B.

Example for Adding Two 4-Bits Numbers According to Proposed Algorithm

Suppose the number A=(011)₂ is added to the number B=(110)2 , without

performing the carry operations. the following steps can be followed:

1. Put the digits of the number A in 3 registers, say register A₁, register A₂, and

register A₃, in the following manner (since number A consists of 3 digits):

 2° 2¹ 2² 2³ 42 52 62 72

 Register A1 1 0 0 0 0 0 0 0

 Register A2 0 1 0 0 0 0 0 0

 Register A3 0 0 0 0 0 0 0 0

 The digit in the position 2° of A will be in the position 2° of register A₁.

,₂Aof register 1of A will be in the position 2 1The digit in the position 2

.3of register A 2of A will be in the position 2 2the digit in the position 2 And

2. put the digits of the number B in register R as follows:

02 12 22 32 42 52 62 72

0 register R 1 1 0 0 0 0 0

3. put 0 in all positions of register S (for the sum) as follows:-

02 12 22 32 42 52 62 72

0 register S 0 0 0 0 0 0 0

4. Since the digit in the position 20of register A1 is equal to 1, and the digit in the

position 20of register R is equal to 0, and the digits in the positions 20 of registers

A2 and A3 are equal to 0, we add the digits in the position 20 of registers A1, A2, A3,

and R. then we put the sum in the position 20 of register S, which will be 1, as

follows:-
02 12 22 32

Eng. & Tech. Journal, Vol.31, No.3, 2013 Design of Software Approach for Speeding up

 Addition Arithmetic Operation

386

1 register S 0 0 0

5. Since the digit in the position 21 of register A1 is equal to 0, and the digit in the

position 21 of register R is equal to 1, and the digit in the position 21 of register A2

is equal to 1, we shift to the left the digit in the position 21 of register A2 to the

position 22 of it.

Then put 0 in the position 21 of register R.

And take the sum of the digits in the position 21 of registers A1, A2, A3, and R.

Put the sum in the position 21 of register S, as follows:-

20 21 22 23

1 register S 0 0 0

6. Since the digit in the position 22 of register A1 is equal to 0, and the digit in the

position 22 of register R is equal to 1, and the digit in the position 22 of register A2

is equal to 1, we shift to the left the digit in the position 22 of register A2 to the

position 23 of it.

Then put 0 instead of 1 in the position 22 of register R.

Take the sum of the digits in the position 22 of registers A1, A2, A3, and R.

Put the sum in the position 22 of register S, as follows:-

20 21 22 23

1 register S 0 0 0

7. Add the digits in the position 23 of registers A1, A2, A3, and R.

Put the sum in the position 23 of register S, as follows:-

20 21 22 23

1 register S

0 0 1

The number in the register S is the result of adding the numbers A and B, which is

the same result of adding A and B with carry.

Testing the Proposed add method with many other test data:-

In this subsection, 9 different samples for adding two binary numbers A and B,

are introduced.

The results of applying the suggested add method are the same results of adding

them with carry.

 02 12 22 32

Test data 1

1A 1 0 0 0 1 1 1 0 A=

2A 0 1 0 0

3A 0 0 1 0 1 1 0 0 B=

R 1 1 0 0

S 0 1 0 1 0 1 0 1 S=

Eng. & Tech. Journal, Vol.31, No.3, 2013 Design of Software Approach for Speeding up

 Addition Arithmetic Operation

387

With using carry. Without using carry according to Algorithm.

Test data 3

+

Test data 2

1 1 1 0 A= 1 1 1 0 A=

1 1 1 0 B= 1 0 1 0 B=

0

1 1 1 S= 0 0 1 1 S=

Test data 9

 Test data 8

1 0 1 0 A= 1 0 1 0 A=

0

1 1 0 B= 1

0 1 0 B=

1

1 0 1 S= 0 1 0 1 S=

Test data 5

 Test data 4

0 1 1 0 A= 1 1 1 0 A=

1

1 1 0 B= 0

1 1 0 B=

1 0 1 1 S= 1 0 1 1 S=

Test data 7

 Test data 6

1 1 1 0 A= 0 0 1 0 A=

0

0 1 0 B= 1

1 0 0 B=

1

1 0 1 S= 1 1 1 0 S=

Eng. & Tech. Journal, Vol.31, No.3, 2013 Design of Software Approach for Speeding up

 Addition Arithmetic Operation

388

ADD OPERATIONS VS. SHIFT OPERATION

AND ROTATE OPERATIONS

In 8085 microprocessor:

The 8085 microprocessor does not provide a shift instruction: however, it does

provide two forms of rotate in two directions:

Rotate left instruction. RLC 1.

Rotate right instruction. RRC 2.

Rotate left instruction through carry. RAL 3.

Rotate right instruction through carry. RAR 4.

To compare the delay time between add operations, from one side and the rotate

operations, from the other side, we must know the time required for each

instruction.

Table (2) lists some of the 8085 add instructions set in comparison

with rotate instructions, along with delay information [3].

SDK-85 Cycles Mnemonic

2.28 7 ADD M

2.28 7 ADC M

2.28 7 ADI

2.28 7 ACI

3.26 10 DAD

1.30 4 RLC

1.30 4 RRC

1.30 4 RAL

1.30 4 RRC

It’s obvious from a Table (2) that the rotate instructions require less number of

clock cycles in comparison with the add instructions. That is the reason behind the

suggestion of the method mentioned, which include shifting and a kind of add

operation, which does not include any carry concept.

In 8086, 8088 and other:-

These microprocessors provide a set of shift instructions and a set of rotate

instructions which position or move numbers to left or right within register or

memory location [4].

The set of shift and rotate instructions are shown in Table (3).

Eng. & Tech. Journal, Vol.31, No.3, 2013 Design of Software Approach for Speeding up

 Addition Arithmetic Operation

389

Table (3) 8086 shift and rotate instructions.

INSTRUCTION ABBRIVIATION

Shift Logical Left SHL

Shift Arithmetic Left SAL

Shift Logical Right SHR

Shift Arithmetic Right SAR

Rotate Left Through Carry RCL

Rotate Left ROL

Rotate Right Through Carry RCR

Rotate Right ROR

Table (4), illustrates the differences in the delay time (in clocks) between the

add operations from one side and the shift and rotate operations from the other side

[4].

Table (4) 8086, 8088 and others microprocessors and

 their instructions times.

Clocks Microprocessor Format

3 , 3 respectively 8086, 8088 ADC reg , reg

16+ea , 24 respectively

7 , 7 , 3 respectively

8086, 8088, 80286,

80386, 80486
ADC mem , reg

9+ea , 13 +ea respectively

7 , 6 respectively

8086, 8088,

80286, 80386
ADC reg , mem

2 8086 SAL reg , 1

2 8088 SHL reg , 1

15 + ea 8086 SAL mem , 1

23 + ea 8088 SHL mem , 1

2 , 2 respectively 8086,8088 ROL reg , 1

2 , 2 respectively 8086,8088 RCL

This method presents a new design of the adder circuit, since the shift

instructions (rotate instructions in 8085) is simple, cheap, fast, and does not cost

any waiting time [5], [6], [7], [8].

CONCLUSIONS

The proposed approach is successfully implemented and tested. But some points

can be inferred:

1- The add operation is built on the carry concept by hardware means, while the

proposed algorithm is built by software means.

Eng. & Tech. Journal, Vol.31, No.3, 2013 Design of Software Approach for Speeding up

 Addition Arithmetic Operation

390

2- Since there is always a waiting time to add the carry bit from low-order

position to high-order position , hence the add with carry operation will be slower

in comparison with the proposed add operation.

3- The idea of proposed algorithm is to exchange carry operation with (move or

shift) operation to reduce the execution time.

4- Its recommended to develop a general algorithm that extends the numbers A

and B as follows:-

A = (a7 , . . . , a2 , a1 , a0)2 and B = (b7 , . . . , b2 , b1 , b0)2 .

5- Its recommended to develop a general algorithms to perform all other

arithmetic operations.

REFERENCES

[1]. Morris Mano, “Digital Fundamentals “, Prentice Hall, International Education,

Eighth Edition, 2003.

[2]. Morris Mano and Charles R. Kime, M. “LOGIC and COMPUTER DESIGN

FUNDAMENTALS “, Pearson International Edition, Pearson Prentice Hall,

fourth Edition, Printed in Singapore, 2008.

 [3]. Ramesh S. Gankar, "Microprocessor Architecture, programming, and

Application with the 8085”, Fifth Edition, person Education, Inc, 2002.

 [4]. Barry B. Brey, "The Intel Microprocessor Architecture, Programming, and

Interfacing”, Pearson International Edition , printed in the United States of

America , Pearson Prentice-Hall, Eighth Education , 2009.

[5]. " LOOKAHEAD ADDERS - CARRY [PDF]"

http://writphotec.com/mano4/Supplements/Carrylookahead_supp4.pdf

www.google.com

 [6]. Fast Addition Carry Lookahead" , "Harvey Mudd College"

http://writphotec.com/mano4/Supplements/Carrylookahead_supp4.pdf

www.yahoo.com

[7]. " Carry-lookahead Adder ", WIKIPEDIA the Free Encyclopedia.

WWW.YAHOO.COM

[8]. " Carry- save Adder ",Wikipedia , the free Encyclopedia.

 www.yahoo.com

http://www.google.iq/url?sa=t&rct=j&q=carry+look+ahead+adders+circuit&source=web&cd=3&ved=0CDwQFjAC&url=http%3A%2F%2Fwritphotec.com%2Fmano4%2FSupplements%2FCarrylookahead_supp4.pdf&ei=VdY_T5-ePIKA8wPXl5SiCA&usg=AFQjCNHQdTr_tYCr2fwWJRNxC2a-9AIgVA
http://writphotec.com/mano4/Supplements/Carrylookahead_supp4.pdf
http://www.google.com/
http://writphotec.com/mano4/Supplements/Carrylookahead_supp4.pdf
http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/

