One-Step Synthesis of Copper Oxide Nanoparticles Using Pulsed Laser Ablation in Water: Influence of the Laser Wavelengths on Optical Properties

Dr. Abdulrahman K. Ali
Applied Sciences Department, University of Technology/ Baghdad
Email: akanano@yahoo.com

Received on: 6/3/2013 & Accepted on: 11/6/2013

ABSTRACT

Laser ablation has proven to be an effective method for generating nanoparticles. In this work, we have successfully produced pure cupper nanoparticles in fast and one-step method by Nd-YAG irradiation of cupper target with a 1064 and 532 nm laser wavelengths in pure water. The particle size, shape and size distributions were measured using a transmission electron microscope TEM. The UV–VIS spectroscopy has been employed for the optical properties. Nanoparticles with diameters 30 nm were observed to be formed in the colloidal solution. The UV–VIS spectrum of the material shows weak plasmon peak around 620 nm, indicating the formation of copper oxide nanoparticles. A clear blue shift is observed in the direct band gap (4.3 eV) of these nanoparticles presumably to the quantum confinement effects exerted by the nanosize.

Keywords: Copper Oxide, Pulsed, Energy gap.
INTRODUCTION

Nanoparticles possess a large fraction of surface atoms per unit volume that leads to increasing the total surface energy and hence the reactivity with atoms or molecules of the surrounding environment. Metals nanoparticles exhibit novel chemical, optical, catalysis and electronic properties are interesting materials with selectivity, specific activity which differ from the bulk properties.

Among various metal nanoparticles, copper oxide CuO nanoparticles are a narrow and direct band gap (Eg=1.2 eV) p-type semiconducting material [1,2], are of significant technological interest and promising applications because of their catalytic [3], optical [4], electrical [5] and magnetic properties [6]; it has been widely used for diverse applications such as gas sensing [7,8], Nanofluid [9], Surface-Enhanced Raman Scattering [10], as well as these materials present high antibacterial activity, low toxicity, chemical stability, long lasting action period and thermal resistance versus organic antibacterial agents [11]. In addition, copper is still a very attractive because of its abundance and cheapness.

Copper oxide nanoparticles have been synthesized through different methods such as, chemical, [16], solvo/hydrothermal method [17], arc discharge pulsed laser deposition [18, 19] and others [20]. Among them, pulsed laser ablation in liquid one of the most common dominant technologies to produce pure and stable NPs suspensions because of its low cost[21], high efficiency and precision [22].

The production of copper oxide nanoparticles using laser ablation of a solid metal in a liquid has been extensively investigated [23-28], but the preparation parameters such as laser wavelength and optical properties are not. Therefore there is a possibility that the particle size of collides can be controlled by changing the photon energy of laser (wavelength). However, no study has been carried out on the relation between energy gap and laser wavelength.

The present work reports on the synthesis, structural and morphological characterization of copper nanoparticles which prepared in water in a one step procedure in order to clarify the relation between particle size as well as optical properties and the laser wavelength.

EXPERIMENTAL

The experimental setup is shown schematically in Figure (1). The beam from a Nd:YAG laser (type HUAFEI) was focused by a lens (F = 10 cm) on the surface of a copper target (99.99%, thickness 1.0 mm). The target was fixed in a glass cell which contains 3 ml pure water. The laser pulse duration was about 10 ns, the pulse-repetition rate 1 Hz, and the maximum energy of the 800m J/pulse. Immediately after the ablation experiment, the UV-VIS absorption spectra of cupper colloids were recorded by a
A transmission electron microscope (TEM), a CM10 pw6020, Philips-Germany, was employed to take electron microphotographs of the resultant nanoparticles. The test samples were prepared by placing a drop of suspension of interest on a copper mesh. The size distributions were obtained by counting of particles in TEM images.

RESULT AND DISCUSSION

Figure (2) shows the nanoparticles solutions produced by laser ablation of copper plate immersed in pure water exposed by 200 laser pulses, with laser flounce (F= 46 J/cm², the laser spot size is 1.22 mm), at laser wavelength of 1064, and 532 nm, respectively. The color of solution was changed and the intensity was increased when advancing in the laser shots, showing the formation of colloidal copper nanoparticles. In this experiment the green color of produced nanoparticles solution was changing in intensity corresponding to laser wavelengths. The interesting optical color is attributed to the formation of metal nanoparticles as they scatter bright intense colors. When the electromagnetic light interacts with nanoparticles solution, the free electrons of the metal nanoparticles undergo a collective vibration with respect to the positive metallic nanoparticles. This process is resonant at a particular frequency of the light and is termed the surface plasmon resonance SPR oscillation [4, 29]. This electronic oscillation can be simply visualized as a photon confined to the small size of the nanostructure. This interaction with solution decays by radiating its energy in electromagnetic wave in green color [4, 30].

Figure (1) Schematic diagram of experimental setup.
One-Step Synthesis of Copper Oxide Nanoparticles Using Pulsed Laser Ablation in Water: Influence of the Laser Wavelengths on Optical Properties

The effect of laser wavelength was examined at 1064 nm, 532 nm. Figure (3) shows absorption spectra of colloidal solutions prepared by ablating copper target in water with 532, 1064 nm laser light. The laser fluence was adjusted at 46 J/cm² and ablation was made for 200 pulses. The spectra consist of strong absorption due to inter-band transitions in the 300–400 nm regions and weak absorption due to plasmon band around 620 nm (the inset) independently of laser wavelengths, which indicated the formation of CuO nanoparticles; because most of the Cu particles produced by laser ablation react with surrounding water and produce copper oxide particles [11,10,22]. The plasmon resonance of colloidal copper particles which is in agreement with previously reported literatures as having a weak peak at 580–640 nm which prepared at various preparation methods [10, 11, 18, 22, and 25].

Figure (3) illustrates that the ablation efficiency at longer wavelengths was higher than that at shorter wavelengths, this can contributed to two factors: the value of the absorption coefficient of bulk copper is higher at longer wavelengths, so the intensity of absorbance peak of 1064 nm higher than at 532 nm. On the other hand, the absorbance at 1064 nm is lower than those at 532 nm in the absorption spectra of copper colloids prepared by 1064 nm light [21]. Thus, the efficiency of self-absorption by copper colloids is higher at shorter wavelengths (532 nm) than at longer wavelengths (1064 nm), leading that the ablation efficiency with shorter-wavelength light is lower than that with longer-wavelength light.

Figure (4-a) shows TEM images of particles in the colloidal solutions. The specimens for TEM experiments were prepared by depositing a drop of solution containing colloidal copper particles onto carbon-coated copper grids and letting them dry completely at room
temperature. The nanoparticles thus produced were calculated to have an average diameter of 30 nm. The mean diameter and size distribution of particles are summarized in Figure (4-b).

Figure (3) Absorbance spectra of the CuO nanoparticles, obtained by laser ablation of copper plates immersed in pure water exposed by 200 laser pulses, with laser fluence of 46 J/cm², at laser wavelength of 1064 nm and 532 nm, respectively.
One-Step Synthesis of Copper Oxide Nanoparticles Using Pulsed Laser Ablation in Water: Influence of the Laser Wavelengths on Optical Properties

Figure (4) (A) Typical TEM image and (B) size distribution of colloidal copper nanoparticles prepared by laser ablation in water, at 1064 nm laser wavelength.

Figure (5) shows the optical band gap energy, \(E_g\), of as synthesized colloidal solution of copper oxide, was determined from the absorbance spectra, where a steep increase in the absorption is observed due to the band–band transition. \(E_g\) is obtained using the following equation for a semiconductor \((\alpha h\nu)^n = B(E – E_g)\) [31]. Where B is a constant, \(E_g\) the band gap energy, \(E = h\nu\) the photon energy, and \(n = 1/2\) or 2, depending on whether the transition is indirect or direct, respectively. The intersection of the slope of \((\alpha h\nu)^2\) vs. \(h\nu\) curve on the x-axis provides band gap energy of the sample.

The energy band gap is calculated to be around 4 eV from the UV–VIS absorption spectrum, which is larger than the reported value for bulk CuO (\(E_g = 1.2\) eV) and which in an agreement with literature for CuO quantum dots [32,31,16]. It was reported that the band gap of semiconductor materials will increase with the decrease in particle size, which leads blue shift in the direct band gap as a consequence of the quantum confinement effects [33].

From these graphs, it is clear that the direct band edge increase with decreasing wavelength. For the particle prepared at 1064, the band edge is estimated to be 3.9 eV (15% error percent), while its value for the particles at 532 nm is 4.3 eV. These changes in \(E_g\) attributed to change in particles size. It has been reported that the absorption of laser light by colloidal metal particles caused change in the size of particles [33]. Also it was reported that particle size was reduced by the self-absorption due to fragmentation [21]. Our results suggested that the self-absorption at 532 nm have a greater influence on the particle size than that at 1064 nm. As the photon energy of 532 nm higher than that at 1064 nm, this lead to the fragmentation of NPs prepared at 532 nm, so the average size of NPs prepared at 532 nm smaller than that prepared at 1064 nm.
One-Step Synthesis of Copper Oxide Nanoparticles Using Pulsed Laser Ablation in Water: Influence of the Laser Wavelengths on Optical Properties

CONCLUSIONS

In summary, we have synthesized copper oxide NPs using the method of laser ablation of the solid target in a liquid environment. Under the present conditions of ablation, the NPs generated in the colloidal solution were having average size in the range of 30 nm, depending on the laser operating parameters (energy and wavelength). The quantum confinement effect exerted by such nanocrystals found to bring significant blue-shift energy gap of the colloidal nanoparticles. Here, we demonstrate that the particle size as well as the energy gap can be controlled by changing the laser wavelength. This technique will be useful to prepare desired size colloids in solutions. In general, the PLAL offers an alternative method for one-step generation of high purity metal-oxide NPs, which can be extended to vital applications.

REFERENCES

[3]. Yang Liu, Chai Lor, Qiang Fu, David Pan, Lei Ding, Jie Liu, and Jennifer Lu "Synthesis of Copper Nanocatalysts with Tunable Size Using Diblock Copolymer Solution Micelles" J. Phys. Chem. C, 114, 5767–5772, 2010
One-Step Synthesis of Copper Oxide Nanoparticles Using Pulsed Laser Ablation in Water: Influence of the Laser Wavelengths on Optical Properties


One-Step Synthesis of Copper Oxide Nanoparticles Using Pulsed Laser Ablation in Water: Influence of the Laser Wavelengths on Optical Properties

[19]. Sy-Bor Wen and Xianglei Mao "Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure" JOURNAL OF APPLIED PHYSICS 101, 123105, 2007.