9A
Research Paper
Complex Surface Representation and Machining Time Estimation Upon Three Types of End Mill Cutter
Engineering and Technology Journal,
2019, Volume 37, Issue 9A, Pages 354-358
DOI:
10.30684/etj.37.9A.1
The accuracy of data transition between CAD and CAM has been playing a great role in the product life cycle, and eventually, the product quality. As products complexity increased, the need to robust technique to data transition increased. On the other hand, Machining simulation facilitates deciding the process parameters. The aim of the present research is divided into two aims: first: building a free form surface and transforming its data accurately from CAD to CAM without any distortion. Second: study the milling process using different end cutters geometry and make a comparison between those in terms of machining time at a constant scallop height (s.h.). The study passed through three steps, first: A mathematical model and computer program had been built for non-uniform B-spline surface creation. The output points are stored in a format to be easily imported. Second: importing the data into manufacturing simulation program to emulate the milling process. Three types of milling tools with different end cutter had been used (flat, ball, and toroidal). Third, use a CIMCO edit package to estimate machining time for the three tools. A conclusion had been made that the surface data had been transformed accurately into the simulation process. Another conclusion was, with fixed (s.h.) the ball end mill takes more time than toroidal, which in turn takes more time than flat.
Smoothing Smartphone GPS Raw Measurements
Engineering and Technology Journal,
2019, Volume 37, Issue 9A, Pages 359-363
DOI:
10.30684/etj.37.9A.2
This research aims to investigate the smoothing of the pseudo-range raw measurements of the smartphone using a Hatch filter. The measurements of smartphones suffer from high noise generated from low-cost antennas and oscillators, which are designed to work in a certain way. These types of low-cost antennas and oscillators are entirely different from geodetic instruments, which are designed for high accuracy positioning. The GPS measurement data were collected using a Huawei P10 device, 41 minutes and 24 seconds GPS observation time with sampling intervals of 1 second using Geo++ Android application. The GPS measurements are processed using standalone (epoch by epoch) method, by MATLAB software developed by the authors, as a part of a software package for processing smartphone GPS measurements. The errors in raw measurements in the Easting, Northing, and Up (ENU) components when using standalone (epoch by epoch) method are ranging from -50m to 30m, and the errors after applying the Hatch filter are reduced to have ranged from -10m to 5m, the raw data were very noisy and funded it has many cycles slips as a result of low-cost antennas and oscillators of smartphone’s. The cycle slips in the measurements were detected and found that it was the result of jumping the errors to 27 m in northing and 43 m in up.
Point Cloud Pre-Processing and Surface Reconstruction Based on Chord Algorithm Technique
Engineering and Technology Journal,
2019, Volume 37, Issue 9A, Pages 364-368
DOI:
10.30684/etj.37.9A.3
3D laser scanner is one of the modern technologies, which used to obtain the geometric information about the 3D scanned object surface. But, there are some problems that are associated with this technique such as the huge number of obtained points which require high memory to save and the required data processing processes. This paper proposed a data simplification algorithm for point cloud of a scanned object using 3D laser scanner (Matter
and Form) in a manner to extract the necessary geometric features, which are
represented by points for a 3D object. This algorithm based on the
instantaneous calculation of chord height of each set of adjacent points in the
point cloud. A MATLAB environment was used to build a proposed
simplification algorithm program. Then this program was applied using a
proposed case study. The result which was obtained from the application of the
proposed algorithm and surface fitting process for the proposed case study
proved the effectiveness of the proposed algorithm in data simplification. The
percent of data which was ignored as noisy data point was (24%) of the total
number of data point in applying the algorithm for two attempts.
3D laser scanner is one of the modern
technologies, which
used to
obtain the geometric information about the 3D scanned object surface.
But,
there are some
problems
that
are
associated with this technique such as the
huge number of obtained points
which
require high memory to save
and
the
required data processing processes.
Th
is paper proposed a data simplification
algorithm for point cloud of a
scanned obje
ct using 3D laser scanner (Matter
and Form) in a
manner to extract the necessary geometric features, which
are
represented by points for a 3D object. This algorithm based on
the
instantaneous calculation of chord height of each set of adjacent points in th
e
point cloud. A MATLAB environment was
used to build a proposed
simplification algorithm program
. Then
this program
was
appli
ed using a
proposed case study.
The result which was obtained from
the
application
of
the
proposed algorithm and surface fitting process for the proposed case study
proved the effectiveness of the proposed algorithm in data simplification.
The
percent of data which was ignored as noisy data point was (24%)
of the
total
number of data point in applying the algorithm for two attempts.
Recycling of Waste Paraffin Wax by the Addition of SiO2 Nano-Powders to Improve Thermal Conductivity
Engineering and Technology Journal,
2019, Volume 37, Issue 9A, Pages 369-373
DOI:
10.30684/etj.37.9A.4
Paraffin wax is an important material used in thermal energy storage (TES) systems. The thermal conductivity of the material is an important parameter that decides the degree of exploitation of the paraffin wax in TES systems. The thermal conductivity is improved by the addition of silicon oxide nanoparticles (1%, 2%, 4%, and 6%) to the paraffin wax. The average size of the SiO2 particles is equal to 38 nm. The addition of SiO2 nano-particles at very small ratios was found to enhance the thermal conductivity of the paraffin wax considerably. SiO2 nanoparticles, add to paraffin wax, have a significant effect in enhancing the thermal storage characteristics of paraffin
Paraffin wax is an important material used in thermal energy storage
(TES) systems. The thermal conductivity of the material is an important
parameter
that
decides the degree of exploitation of the paraffin wax in TES
systems. The thermal conductivity is improved by the addition of silicon oxide
nanoparticles (1%, 2%, 4
%,
and 6%) to the paraffin wax. The average size of the
SiO
2
particles is equal to 38 nm. The a
ddition
of SiO
2
nano
-particles at very
small ratios was found to enhance the thermal conductivi
ty of the paraffin wax
considerably. SiO
2
nanoparticles, add to paraffin wax, have
a significant effect
in enhancing the thermal storage characteristics of paraffin
A Compact Single-Feed Patch Antenna with Frequency and Polarization Diversity
Engineering and Technology Journal,
2019, Volume 37, Issue 9A, Pages 374-383
DOI:
10.30684/etj.37.9A.5
A new compact single feed square ring patch antenna using meandered 4λ transformer is designed, for frequency and polarization diversity. The proposed antenna is constructed from a square ring patch antenna, and two orthogonal meandered cascaded 4λ transformer (OMCT), incorporated with six switches for frequency and polarization reconfiguration purposes. The OMCT with switches is necessary to get good impedance bandwidth (BW) and axial ratio bandwidth (ARBW) for circular polarization state. In addition, it utilized to excite the antenna at two orthogonal locations, with equal magnitude and quadratic in phase, for achieving circular polarization mode at resonant frequencies 2.44GHz, 4.7GHz, and 5.6GHz. Moreover, it can excite the antenna as non-orthogonal modes for various other frequency bands, such as 2.89 GHz, 3.49 GHz, 4.9 GHz, 5.2GHz, 5.49GHz, 6.16GHz and 3.1GHz as linear polarization (LP) state. The proposed antenna has a compact low profile planar structure with area equal to 23mm2. Simulation and measured results show that the proposed antenna demonstrates a reasonable impedance bandwidth, and axial ratio in the circularly polarized state. Simulation results have been obtained from commercial CST-2014 Microwave Studio. The proposed antenna is fabricated for simulation result verification, and the implemented antenna is tested using R&S ZVL13 Vector Network Analyzer. The experimental confirms the simulation results.