Print ISSN: 1681-6900

Online ISSN: 2412-0758

Volume 39, 5A

Volume 39, 5A, May 2021

Research Paper

Effect of Adding Silver Element and Zirconia Ceramic on Corrosion Behavior and Mechanical Properties of Pure Titanium

Wehad A. Al-Rawy; Emad S. Al-Hassani

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 674-694
DOI: 10.30684/etj.v39i5A.1087

In this research, all the samples are prepared using the powder metallurgy technique by adding silver element and Zirconia ceramic material to the commercially pure titanium at a different weight percent of (10, 20 and 30) to investigate the effect of adding these materials to the CP-Ti on corrosion behavior and mechanical properties. There are two sets of each type of alloys Ti-Ag and Ti ZrO2. The Preparation process was by Weighing, Mixing and Homogenizing Powders by Ball Mill, compacting at 4 tons for 1 min. and Sintering at 700 and 900 °C for 2 hrs. under a controlled atmosphere. The corrosion results showed a good corrosion resistance increases with increasing the silver content as the corrosion rate would be the best in (30% Ag) content with(0.091 mpy) at sintering temperature of 700 °C. And with a sintering temperature of 900 °C, the best result was with (30% Ag) with (0.059) mpy. In the Ti-ZrO2 alloys, the best result was with the zirconia content of (30%ZrO2) when cooled in the air with (1.347) mpy at sintering temperature of 700 °C, this results obtained in Ringer’s solution. And microstructures analysis stated that at the silver and the Zirconia content of (10-20 wt%) single phase of  (α- Ti alloy), as the silver and Zirconia content increased to (30% wt), in addition to (α-phase), (Ti2Ag) intermetallic compound developed in the silver alloy microstructure and (TiZr)3O intermetallic compound developed in the microstructure of Ti- Zirconia composites and the hardness test result best hardness of  titanium-silver alloys is with a silver content of (30% Wt) at sintering temperature of 900 C.

Effect of Adding TiO2on Some Mechanical Properties of Galloy

Osamah A. Khadhair; Rana A. Anaee; Kadhum M. Shabeeb

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 695-702
DOI: 10.30684/etj.v39i5A.1395

Because of importance the Ga alloys in dental applications, many attempts were  done  to  improve  the  properties  of  this  alloy. The  currentwork involves  addition  of  TiO2nanotube  powder  to  Galloy  to  improve  somemechanical  properties.  These  properties  included  hardness,  compression, and creep. The characterization of prepared TiO2/Galloys with five wt% of TiO2(1, 2, 3, 4, and 5 wt%) was done by XRD and SEM/EDS. The results showed  that  the  hardness,  compression, were  increased  with  increasing percentage  of  added  TiO2,  while  creep  decrease.Some phases  such as β-Sn,  Ag2Ga  and  Ag9In4were  contributed  to  improve  the  properties  of  new TiO2/Galloycomposites.

Effect of CO2 Laser Fluence on Cladding Geometrical Dimensions Alternations

Mohammed J. Kadhim; Mahdi M. Hanon; Suhair A. Hussein

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 703-710
DOI: 10.30684/etj.v39i5A.1474

Geometrical dimensions could play a potential role in the function of laser cladding of nickel-base powder on the cold-rolled carbon steel substrate. The geometrical dimensions and their impact on the efficiency of the process of laser cladding of nickel-base powder (Ni -10wt% Al) on cold rolled 0.2% carbon steel substrate was investigated. This work focused on the effect of laser-specific energy input of CO2laser. The geometrical dimensions of cladding regions are including cladding width, cladding height, depth of dilution, contact angle, dilution area, cladding area, and heat-affected zone dimensions determinations. The laser power (1.8 kW) was used at different traverse speeds (1.5, 3.6, 5, 7.1, 8.6, 12.5 mm/s) with (3mm) laser beam diameter. The feed rate was kept constant after many preliminary claddings at approximately 11 g/min. Fluence values ranged from (48-400J/mm2), and the power density value was (255W/mm2). A minimum dilution percentage (25%) was obtained at the highest fluence value (400 J/mm2). Observations were measured using an optical microscope, scanning electron microscopy, and Image software. Obtained results indicated that the increase in the fluence leads to an increase in height of cladding, HAZ region but lower depth of dilution

Secured Medical Image Hashing Based on Frequency Domain with Chaotic Map

Amira K. Jabbar; Ashwaq T. Hashim; Qusay F. Al-Doori

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 711-722
DOI: 10.30684/etj.v39i5A.1786

Recently, online-medicine got increased global interest, particularly during COVID19 pandemic. Data protection is important in the medical field since when promoting telemedicine applications, it is necessary to protect the patient data and personal information. A secured process is needed to transmit medical images over the Internet. In this paper hash algorithm is employed to protect the data by using powerful features from the coupled frequency domains of the Slantlet Transformation (SLT) and the Discrete Cosine Transform (DCT). The Region of Interest (ROI) is localized from an MRI image then extraction of a feature set is performed for calculating the hash code. Then, hash code is enciphered to maintain security by employing a secure Chaotic Shift Keying (CSK). The suggested method of security is ensured by the strength of the CSK and the encryption key secrecy.  A detailed analysis was conducted using 1000 uncompressed images that were chosen randomly from a publicly available AANLIB database. The proposed methodology can be useful for JPEG compression. Also, this method could resist many attacks of image processing likes filtering, noise addition, and some geometric transforms.

Protection Coordination of 33/11 kV Power Distribution Substation in Iraq

Thamir Abdul-Wahhab; Yamur M. Obied

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 723-737
DOI: 10.30684/etj.v39i5A.1790

The coordination between protective devices is the process of determining the most appropriate timing of power interruption during abnormal conditions in the power system. The aim of this work is to coordinate the protection of the 33/11 kV power distribution substation in Iraq using the CYME 7.1 software package. In this paper overcurrent and earth fault relays are simulated in two cases, with time delay setting and instantaneous setting, to obtain the Time Current Characteristics (TCC) curves for each Circuit Breaker (CB) relay of Al-Karama substation (2×31.5 MVA, 33/11 kV) in Babil distribution network. The short circuit current at each CB is calculated and accordingly, the protection coordination for Al-Karama substation has been simulated. The TCC curves have been obtained in two cases for overcurrent and earth fault relays; in a case with time delay setting and in the case with the instantaneous setting. The setting takes into consideration the short circuit current at the furthest point of the longest outgoing feeder and the shortest outgoing feeder.

Analysis of Distribution System Reconfiguration under Different Load Demand in AL-KUT City by using PSO Algorithm

Zahraa H. Dawood; Rashid AL-Rubayi

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 738-753
DOI: 10.30684/etj.v39i5A.1842

Network reconfiguration is the best way to inquisitive a flexible, reliable and effective distribution network. An efficient optimization technique that uses Particle Swarm Optimization (PSO) is described and analyzed with the goal of reducing power losses and enhancing the voltage profile in the distribution network by reconfiguring the network, taking into account the branch current limit, branch capacity limit, bus voltage limits and radial structure constraint (no meshed loop). The approach is applied to the part of AL-KUT city distribution system (TAMOZE region system) to attain an optimum network configuration in connection with power loss. Two dissimilar load situations are regarded, and the performance of the suggested approach is also proved by increasing the decrease in power loss by using MATLAB under steady-state conditions.

Dynamic Power Consumption In CMOS N Bit Full-Adder Circuit

Amal F. Hasan; Qusay F. Al-Doori

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 754-767
DOI: 10.30684/etj.v39i5A.1846

This paper discusses power consumption in the full adder circuit using some fabrication technologies. Though many studies related to power consumption in the full adder circuit were performed, however, few investigations about the effect of the number of bits on the power consumption are addressed. In this paper, the effect of changing the number of bits on the power consumption and time delay of the full adder circuit will be observed and the effect of changing the technology size is going to be calculated. The results will show that there is a direct relationship between the number of bits and power.

Experimental Investigation of Surface Roughness Using Uncoated and Coated Tungsten Carbide Cutting Tool in Turning Operation

Frzdaq N. Thamer; Ali Abbar; Farhad. M. Othman

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 768-778
DOI: 10.30684/etj.v39i5A.1887

The cutting process is an important process of industrialization. It is requisite to using advantage quality cutting tools in order to preserve the type of product. Coating on the cutting tool has a substantial effect in terms of mechanical properties and the end results of the product. The cutting tool can be manufactured in various material types, but today's cemented tungsten carbide is the most commonly used material in the tool industry because its properties comply with manufacturers' requirements. This study investigates the impact of an Al2O3 coated cutting tool relative to an uncoated cutting tool on the dry cutting process. Different parameters are used in the cutting process when cutting the metal. The cutting parameters used are feed rate and cutting speed, An analysis of the effects of these parameters on the surface roughness. In this analysis, the surface roughness are measured for components turned from steel1040, The L9 Taguchi orthogonal arrays and analyses of variance (ANOVA) was employed to analyze the influence of these parameters. In the case of (uncoated, Al2O3 coated tool), the better surface roughness (SR) with used feed rate (0.05 mm / rev) and cutting speed (140 m/min) where the roughness value was (0.81μm) and (0.78μm) Respectively. The results of this study indicate that the ideal parameters combination for the better surface finish was high cutting speed and low feed rate.

Modeling and Control of Wheeled Mobile Robot With Four Mecanum Wheels

Sameh F. Hasana; Hasan M. Alwan

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 779-789
DOI: 10.30684/etj.v39i5A.1926

This work presents a driving control for the trajectory tracking of four mecanum wheeled mobile robot (FMWMR). The control consists of Backstepping-Type 1 Fuzzy Logic-Particle swarm optimization i.e.,(BSC-T1FLC-PSO). The kinematic and dynamic models have been derived. Backstepping controller (BSC) is used for finding controlled torques that generated from robot motors while Type-1 fuzzy logic control (T1FLC) as well as particle swarm optimization (PSO) used for finding the appropriate values of gain parameters of BSC. Square trajectory has been selected to test the performance of the control system of FMWMR. MATLAB/ Simulink is used to simulate the results. It has been concluded from the results that obtained from this control system there is a good matching between the simulated and the desired trajectories.

Humidification Effect on the Performance and Emissions of (DI) Diesel Engine Running on Diesel Fuel with Biodiesel Blended Nano Additives

Hussein Jumaa; Mahmoud A. Mashkour

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 790-803
DOI: 10.30684/etj.v39i5A.1935

The effect of humidification of the air on the performance of a compression ignition engine operating on diesel, biodiesel with nano additives was investigated. The experiment was carried out on a single-cylinder, four-stroke, naturally aspirated water-cooled, direct injection Ricardo (E6/US) diesel engine at a constant speed of 1800 rpm, and varying loads. A mixture of Biodiesel (waste cooking oil) and diesel fuel by four ratios (B5, B10, B15, and B20) was used in the experiment. Besides, five concentrations of Iron oxide nanoparticles (Fe2O3, with particle size 20 nm) as fuel-additives were prepared (10 ppm, 30 ppm, 50 ppm, 70 ppm, and 100 ppm), and added to the test fuels (Bio-Diesel).  Taguchi Method by DOE was used for the optimization in this investigation. The results of Taguchi Method experiments identified the biodiesel (B20), nano additive (100 ppm), relative humidity (65%). The experimental results manifested that BTE improved by 17.62% and BSFC decreased by 12.72%, while NOx and PM reduced by 8.45%, 24.17%, respectively.

A Review on Path Planning Algorithms for Mobile Robots

Mustafa S. Abed; Omar F. Lutfy; Qusay F. Al-Doori

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 804-820
DOI: 10.30684/etj.v39i5A.1941

Mobile robots use is rising every day. Path planning algorithms are needed to make a traveler of robots with the least cost and without collisions. Many techniques have been developed in path planning for mobile robot worldwide, however, the most commonly used techniques are presented here for further study. This essay aims to review various path planning strategies for mobile robots using different optimization methods taken recent publisher’s paper in last five year.

Flexural Properties of Functionally Graded Polymer Alumina Nanoparticles

Mahdi M. S. Shareef; Ahmed N. Al-Khazraji; Samir A. Amin

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 821-835
DOI: 10.30684/etj.v39i5A.1949

In this paper, a functionally graded polymer nanocomposite (FGPNC) was arranged via mixing the Alumina (Al2O3) nanoparticles (50 – 100 nm) with an epoxy matrix through five layers of 1.2 mm thickness for each layer using hand lay–up technique. Different volume fractions were taken (0, 1, 2, 3 and 4) % of the used nanoparticles and were cast in molds made from acrylic for creating the graded composite sheet in the thickness direction. The prepared isotropic specimen was tested by tensile and compressive test. The results showed that the (4% Vf of Al2O3) has the best enhancement of the ultimate tensile strength (85.25% from neat epoxy) and decreased thereafter. Flexural properties of three different types of functionally graded materials (FGMs), including FGM1, FGM2 and FGM3, isotropic nanocomposite (2% Al2O3) and pristine epoxy were obtained. Flexural strength and flexural modulus of the functionally graded polymer nanocomposite for each type of FGMs enhanced by (51.7%) and (67%), respectively for the FGM1 loaded from the neat epoxy side, whereas for the FGM1 loaded from the (4%) side, the improvement in these properties was (17.8%) and (29.4%), correspondingly over those for the neat epoxy. For FGM2, the improvement in the flexural strength was (27%) and (71.8%) for the flexural modulus as compared with pristine epoxy. The enhancement in the flexural strength of FGM3 was (27%) and flexural modulus (57.7%). Design Modeler (ANSYS Workbench) was used to verify the experimental flexural test results. A very good agreement was found between the experimental and numerical results with a maximum error of (3.92%) in the flexural modulus for FGM1 loaded from the composite side.

Gasoil Hydro-desulfurization using Catalyst synthesized from Iraqi Kaolin Clay: Optimization with Response Surface Methodology (RSM)

Khlood S. AlKhafaji; Zaidoon M. Shakor; Bashir Y. Al-Zaidi; Sattar J. Hussein

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 836-845
DOI: 10.30684/etj.v39i5A.1977

This search aim to study the feasibility of hydro-desulfurization (HDS) of gas oil in fixed bed reactor by using economic support catalyst alumina meta kaolin (AMK) under various operating condition, i.e. Temp. (240−320 ◦C), Press. (3–12 bar), WHSV (2–6 h−1) at H2/HC ratio (50 vol./vol.). The support catalyst was prepared from Iraq kaolin and characterization by using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infrared (FTIR) spectroscopy.  Experimental design was used to determine which parameter (e.g. temperature, pressure and WHSV) has a greater influence on the obtained HDS and the optimum condition of process. The result shows that optimum condition given (Temp. 300 C, Press. 12 bar and WHSV 2 h-1) and all parameter have significant implication in the process.

Experimental Investigation of The Optimal Location of PCM Capsules in a Hollow Brick Wall

Hayder Abbas; Jalal M. Jalil; Sabah T. Ahmed

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 846-858
DOI: 10.30684/etj.v39i5A.1980

In this paper, an experimental investigation of the integration of PCM capsules as insulation material into the outer or inner rows of hollow brick to find out the optimum location of the PCM capsules that give the best thermal performance of a wall. A test model consists of two identical cubical rooms was designed and fabricated to test the wall with and without PCM in a natural outdoor condition in Diwaniyah city in Iraq during the summer. The results show that the PCM will reduce the temperature of the inner side of the test wall and test room by 2.7℃ for the PCM capsules in the inner row while the reduction in both the inner surface temperature and the room due to the use of the capsules in the outer row was 1.9℃. The time lag for the two cases was 1 hour. So that, the inner row location of PCM is the optimum location.

Quadratic Support Vector Machine and K-Nearest Neighbor Based Robust Sensor Fault Detection and Isolation

Ahmed M. Abed; Sabah A. Gitaffa; Abbas H. Issa

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 859-869
DOI: 10.30684/etj.v39i5A.2002

Fault detection plays a serious role in high-cost and safety-critical processes. There are two main drivers for continuous improvement in the area of early detection of process faults safety and reliability of technical plants. Detect fault in Geophone string sensors (SG-10) are very important in oil exploration to avoid loss economy. Methods are developed to enable earlier detection of process faults than the traditional limit and trend checking based on a single process variable and the development of these methods is a key matter. Classification methods will be used for pattern recognition and as such is appropriate for fault detection. In supervised training input-output pairs, both for normal and fault conditions, are presented to the network. The models were trained on the free fault and fault sensors. Then the Quadratic Support Vector Machine (QSVM) and k-Nearest Neighbor (KNN) as the classifiers are used. The test results for measuring the performance of 1232 sample classifiers from data show that the accuracy of fault-free sensor recognition is 97.4 % and 100% consecutively for these classifiers.