Print ISSN: 1681-6900

Online ISSN: 2412-0758

Volume 38, Issue 4A

Volume 38, Issue 4A, April 2020


Comparative Study of Perturb & Observe, Modified Perturb & Observe and Modified Incremental Conductance MPPT Techniques for PV Systems

Mohanad H. Mahmood; Inaam I. Ali; Oday A. Ahmed

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 478-490
DOI: 10.30684/etj.v38i4A.329

This paper presents a modified maximum power point tracking algorithm (Modified MPPT) for PV systems based on incremental conductance (IC) algorithm. This method verified with the dynamic irradiance and sudden change of irradiance, the comparisons with conventional methods, for example, the perturbation and observation (P&O) and Modified perturbation and observation (Modified P&O) were performed. A photovoltaic (PV) panel was simulated and tested using MATLAB/Simulink based on PV panel at Power Electronics Laboratory. The results show that this method capable to find the maximum power point (MPP) under dynamic behavior faster than ( P&O) and Modified P&O). Reduced oscillation of MPP indicates enhanced efficiency, providing maximum power transfer to load

Characterizations of Synthetic 8mol% YSZ with Comparison to 3mol %YSZ for HT-SOFC

Abeer F. Al-Attar; Saad B. H. Farid; Fadhil A. Hashim

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 491-500
DOI: 10.30684/etj.v38i4A.351

In this work, Yttria (Y2O3) was successfully doped into tetragonal 3mol% yttria stabilized Zirconia (3YSZ) by high energy-mechanical milling to synthesize 8mol% yttria stabilized Zirconia (8YSZ) used as an electrolyte for high temperature solid oxide fuel cells (HT-SOFC). This work aims to evaluate the densification and ionic conductivity of the sintered electrolytes at 1650°C. The bulk density was measured according to ASTM C373-17. The powder morphology and the microstructure of the sintered electrolytes were analyzed via Field Emission Scanning Electron Microscopy (FESEM). The chemical analysis was obtained with Energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) was used to obtain structural information of the starting materials and the sintered electrolytes. The ionic conductivity was obtained through electrochemical impedance spectroscopy (EIS) in the air as a function of temperatures at a frequency range of 100(mHz)-100(kHz). It is found that the 3YSZ has a higher density than the 8YSZ. The impedance analysis showed that the ionic conductivity of the prepared 8YSZ at 800°C is0.906 (S.cm) and it was 0.214(S.cm) of the 3YSZ. Besides, 8YSZ has a lower activation energy 0.774(eV) than that of the 3YSZ 0.901(eV). Thus, the prepared 8YSZ can be nominated as an electrolyte for the HT-SOFC.

Preparation and Characterization of Polymer Blend and Nano Composite Materials Based on PMMA Used for Bone Tissue Regeneration

Sally A. Kadhum Alsaedi; Sihama I. Salih; Fadhil A. Hashim

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 501-509
DOI: 10.30684/etj.v38i4A.383

As the elderly population increases, the need for bone loss treatments is increasing. Vital substances used in such treatments are required to continue for a longer period and work more effectively. The particularly important biological material is poly methyl methacrylate (PMMA) bone cement, which is widely used in damaged bone replacement surgery. So, this study focused on the role of added some nanoparticles consist of zirconia (ZrO2), and magnesia (MgO) on the binary polymeric blend (Acrylic bone cement: 15% PMMA) for a bone scaffold. Where, ZrO2 and MgO nanoparticle was added with selected weight percentages (0, 0.5, 1, 1.5 and 2 wt.%), which were added to the polymer blend matrix. Some mechanical properties were studied including the tensile strength and young modulus for all the prepared samples. The chemical bonding of nanoparticles and synthetic binary polymeric blend composites was evaluated by Fourier Transform Infrared (FTIR) spectroscopy. Tensile strength and young modulus of binary polymeric blend reinforced with 1.5 wt.% ZrO2, and 1 wt.% MgO, significantly increased. The surface morphology of the fracture surface of tensile specimens was examined by Scanning electron microscope (SEM). The SEM images confirmed that the homogenous distribution of nanoparticles (ZrO2, and MgO) within the polymeric blend matrix.

Random Forest (RF) and Artificial Neural Network (ANN) Algorithms for LULC Mapping

Tay H. Shihab; Amjed N. Al-Hameedawi; Ammar M. Hamza

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 510-514
DOI: 10.30684/etj.v38i4A.399

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019. They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively

Hydrogeological and Hydro Chemical Evaluation of Groundwater in Karbala Region Using Geographic Information System (GIS)

Marwa S. Hussein; Imzahim A. Alwan; Tariq A. Hussain

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 515-522
DOI: 10.30684/etj.v38i4A.492

The study area is located in the holy governorate of Karbala, Iraq; the research studied a predictive mathematical model of groundwater within Dibdiba Formation and by fifty (50) wells distributed randomly within the boundaries of the study area, all of them fall within the unconfined aquifer. Likewise, there is no component to direct the activity of these wells, where a mathematical model for the study area has been developed using the groundwater system modeling program (GMS v.10). The area was divided into a grid where the dimensions of a single cell ranged from 250m×250m. The model of the steady flow state was adjusted utilizing pressure driven conductivity extending from 9 to 15 m/day with a 0.15 storage coefficient to match the groundwater levels measured with the calculated groundwater table. The model was run for unsteady flow condition in the first scenario with fifty (50) wells and five (5) years. The drawdown in the groundwater tables ranged between (0.05-1.05) m. In the second scenario, the model was run after adding thirty-six (36) wells for five (5) years, groundwater limits 0.15-1.15 meters. The drawdown values are concentrated near wells sites, and the drawdown decline as we move away from the sites of these wells and this reflects the nature of the water reservoir located in the study area, which is characterized by high production where compensation resulting from the operation of the wells decline rapidly by the reservoir. Therefore, the values of the drawdown in elevations appeared very low. The study also showed the possibility of drilling additional wells in this area depending on this model to benefit from them in the future for different uses

Experimental Investigation of the Influence of Adding Alumina to Diesel Fuel on the Engine Performance and Emission Characteristics

Sadiq T. Bunyan; Abed AL-Khadim M. Hassan

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 523-529
DOI: 10.30684/etj.v38i4A.498

The present experimental work is conducted to examine the influence of adding Alumina (Al2O3) nanoparticles to diesel fuel on the characteristic of the emissions and engine performance. The size of nanoparticles which have been added to diesel fuel to obtain nano-fuel is 20 nm. Three doses of Aluminum oxide were prepared (25, 50 and 100) ppm. The nanoparticles mixed with fuel by mechanical homogenous (manual electrical mixer) and ultrasonic processor. The study reveals that the adding of Aluminum oxide (Al2O3) to gas oil (Al2O3+DF) enhances the physical properties of fuel. Also, the adding of (Al2O3) reduce CO emissions by 20.5%, decrease NOx emission by 12.2%, increasing CO2 emissions by about 2.27% and decrease UHC emission about 13.5%. Furthermore, reduces the brake specific fuel consumption by 14.3%, decreasing the equivalence ratio by14.87% and improving the brake thermal efficiency by about 10.89%.

Optimizing of Coating Layers Parameters of (Nano Hydroxyapatite/TiO2 NPs) on Nitinol SMAs by Electrophoretic Deposition

Riyam R. Rawdan; Makarim H. Abdulkareem; Ali Mustafa

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 530-544
DOI: 10.30684/etj.v38i4A.577

This study aims to obtain the optimal variable for depositing (HA, TiO2 and Composite) Nanomaterial on NiTi SMAs. Taguchi approach (with L9 array) was used to obtain the optimal conditions for coating produced by Electrophoretic deposition (EPD) techniques. The deposition process was done in different conditions (voltage, time, concentration and degree of grinding). Voltages were used (20, 40 and 60) volts, the time is (2, 4 and 6) min, the degree of the surface roughness (180, 500 and 1200) μm while the concentration of HA and TiO2 are (2, 4, and 6) g/L for each one. Chitosan (biopolymer) was used as binder material to the ceramic materials. The result of the Taguchi approach detected that the best conditions of HA layer are (20 V, 4 min, 2%C and the degree of surface 180), TiO2 is (20 V, 4 min, 4%C and the degree of surface 180) and composite layer is (60 V, 4 min, 4%C and the degree of surface 180). Solutions stability was measured by utilizing Zeta potential tests; which clarified good stability for all of them. Optical microscope and scanning electron microscopy were used to characterize and study the surface of the coating layers. The bonding adhesion was measured using a tape test in order to evaluate the adhesion bonding between the coating and substrate. It found that the percentage of removal coating area for samples were (8.8%for HA, 4.9% for TiO2 and 6.9% of the composite layer.

Improve the Surface Characteristics of the Electric Discharge Machining Employing a Method Burnishing Process

Shukry H. Aghdeab; Ahmed G. Abdulameer; Ahmed B. Abdulwahhab; Majid H. Ismiel

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 545-551
DOI: 10.30684/etj.v38i4A.308

Electrical Discharge Machining (EDM) applies the concept of material eradication by utilizing electric spark erosion. The target of this exploration concentrates to examine the ideal procedure parameters of EDM on Aluminum 6061-T6as a workpiece with copper as a tool electrode. The effect of various process operators 'on machining rendering was examined. Internal factors with current (10, 20, 30) Ampere, pulse on time (50, 100, 150) μs was used after which takes pulse off time (25, 50, 75) μs. All parameters applied for empirical acts with influence on Ra (surface roughness ). The result showed that MRR" Material Removal Rate” is increment by expanding in current and pulse on time and it declines by expanding in pulse off time. Optimal condition are gained when using " Using current 30 Ampere, pulse on time is 150 μs and minimize assessment of pulse off time is 25 μs.

Effect of Pre-Tension on the Springback Behavior of the Yellow Brass

Anwar H. Zabon; Aseel H. Abed

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 552-560
DOI: 10.30684/etj.v38i4A.96

Springback forecasting of sheet formation is constantly remarkable problem in the métier, due to their influence the great in the definitive shape of the product. Study presents effects of pretension in tow rolling direction (0, 45 degree) on the springback behavior of the (Brass 65-35) sheet under V-die bending by an experimental. The pretension ranges from five different pretensions levels starting from 11% to 55% from total strain in each rolling direction by increment of 11%. used in punching that was performed at a constant deformation velocity of (5 mm/min) then bent on a 90° V-shaped die for the springback evaluation. The results from experiment indicate that the springback increase with pretension ratio and the springback in 45 degree is higher in rolling direction.

Experimental Investigation of Combined Effect of Particle Size and Stability of Al2O3-H2O Nanofluid on Heat Transfer Augmentation Through Horizontal Pipe

Abdulhassan A. Karamallah; Hayder H. Abed

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 561-573
DOI: 10.30684/etj.v38i4A.177

The stability of nanofluid plays a rule in heat transfer growth for different engineering systems. The stability and particle size of Al2O3-H2O nanofluid effects on heat transfer are studied experimentally. Two particle sizes (20 and 50 nm) with (0.1, 0.5 and 1%) concentrations were prepared and tested under constant heat flux (1404 W) with fully developed turbulent flow through a horizontal pipe. The results show an increase in Nusselt number by 20.7% and 17.6% with 1 vol.% concentration for 20 and 50 nm, respectively compared to distilled water. Examined nanofluid showed improvement in Nu number by (30.3 and 23.5) % at 1 vol.% concentration compared to water. Obtained results show minor decrease in the pressure drop and friction factor with nanofluid after stability treatment. Different correlations between Nu number and friction factor relating to studied parameters were observed

Effect of Octane Number on Performance and Exhaust Emissions of an SI Engine

Noor H. Athafah; Adei M. Salih

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 574-585
DOI: 10.30684/etj.v38i4A.263

Spark ignition engines are very popular engines that they are running millions of vehicles all over the world. This engine emits many harmful pollutants, such as CO, UHC, and NOX. In this paper, the impact of gasoline octane number on the engine performance and exhaust emissions was studied. In the tests, four-cylinder, four-stroke engine, and two variable octane numbers (RON83 and 94.5) were used. The engine was run at different engine speeds and loads. The results from the experimental study indicated that the brake specific fuel consumption (bsfc) of RON94.5 was higher than RON83 by 13.93%, while the brake thermal efficiency (ƞbth) was higher for RON83 compared to RON94.5 by 12.31%. The emitted emissions for the tested fuels were high when RON83 was used compared to RON94.5 by 65.52%, 49.11%, and 57.33% for CO, UHC, and NOX, respectively.

Preparation of Al2O3/MgO Nano-Composite Particles for Bio-Applications

Hayder A. Sallal; Alla A. Abdul-Hameed; Farhad. M. Othman

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 586-593
DOI: 10.30684/etj.v38i4A.290

This study describes the preparation and study of the properties of Nano composite particles prepared in a sol-gel method which consists of two materials (Αl2Ο3-MgΟ). The powder was evaluated by x-ray diffraction analysis, scanning electron microscopy analysis (SEM), particle size analysis, and energy dispersive x-ray analysis (EDX) and antibacterial test. The evaluation results of the nanocomposite particles shows a good distribution of the chemical composition between aluminum oxide and magnesium oxide, smoothness in particles size where it reached to (54.9, 59.8) nm at calcination in (550 0C and 850 0C) respectively, formation of different shapes of nanoparticles and different phases of the Αl2Ο3 particles (kappa and gamma) and nanopowder have well antibacterial action, Therefore, this reflects the efficiency of the proposed method to manufacture the nanocomposite powder and the possibility of using this powder as a strengthening material for the composite materials and using these composite materials in bio applications, especially in the fabrication of artificial limbs.

A Comparison Study on the Effect of Various Layered Sandy Soil Deposited on Final Settlement under Dynamic Loading

Hussein H. Karim; Zina Walid Samuel; Mohammed A. Hussein

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 594-604
DOI: 10.30684/etj.v38i4A.1569

The foundation is expansion in base of column, wall or other structure in order to transmit the loads from the structure to under footing with a suitable pressure with soil property. There are two conditions to design foundation: 1. The stress is applied by footing on soil is not exceeded allowable bearing capacity ( ). 2. The foundation settlement and differential settlement are due to applied loads are not exceeding the allowable settlement that based on the type and size of structure, the nature of soil. Rigid square machine footing with dimension 200*200 mm with two types of relative density (50 and 85)% medium and dense density respectively are using in this study in different 28 models to show the effect of layered sandy soil in two configuration, medium-dense MD and dense-medium DM on the final settlement in magnitudes and behaviors under dynamics loads applying with different amplitude of loads (0.25 and 2) tons at surface with amplitude-frequency 0.5 Hz with explain the effect of reinforcements material on reduction the magnitude of settlement. The final results appeared with respect to the specified continuous pressure and the number of loading cycles, the resulting settlement from the dynamic loading increases with the increase in the dynamic pressure magnitude, the variation on densities of layered soil effect on the amount of settlement due to different loads applied. It’s found that for increasing load amplitude increasing of settlement values particularly with low density soil when other variables are constant. As the amplitude of loading is increased from 0.25 ton to 2 tons, the settlement has been increased. MD soil density lower values of settlement can be obtained with type I of reinforcement where load amplitude equal to 0.25 ton with percent of enhancement between (28.4-34.3)% for different configuration of layers of reinforcement, for load amplitude equal to 2 tons the value of enhancement of settlement reached to about (35-38.4)%; while for DM density soil values of settlement can be obtained with type I of reinforcement where load amplitude equal to 0.25 ton percent of enhancement between (20-34.35)% for different configuration of layers of reinforcement, but the best value of enhancement of settlement get with load amplitude equal to 2 tons reached to about (38.7-41.17)%.

Strut Confinement of Simply Supports Deep Beam Using Strut Reinforcement

Eyad K. Sayhood; Khudayer N. Abdullah; Sarah J. Kazem

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 605-613
DOI: 10.30684/etj.v38i4A.117

This study investigates the effect of confining the Strut region of the deep beam by using Struts Reinforcement; which consists of four main bars enclosed by stirrups. Six specimens were tested for investigating the behavior of deep beams including; ultimate load, mid-span deflection, crack pattern, first shear and first flexure cracks, concrete surface strain and mode of failure. The specimens were tested under two symmetrical points load with and of 1 and compressive strength of 38 MPa. The main parameters were: first one the diameter of the main bars of Strut Reinforcement (8, 10, 12 mm) with constant spacing of stirrups equal to 80 while the other parameter was varied spacing of stirrups of strut reinforcement (120, 100, and 80 mm) with constant main bars diameter of 8 mm. The test results showed that the Strut confinement generally increased the ultimate load from 750 kN to 1250 kN and the ductility of the beam, confined shear cracks and strain surface across the strut and shear area and turned failures mode from shear failure to flexure. The increase in the diameter of the main bars enhanced the behavior of the beam more than the stirrups number

Study of the Barreling of Copper Solid and Hollow Cylinders under Uniaxial Compressive Load

Abdullah D. Assi

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 614-621
DOI: 10.30684/etj.v38i4A.306

In this study, the effect of axisymmetric compression of cylindrical blocks
of copper on diameter ratio, height reduction ratio and aspect ratio was
noted. The effects of these non-dimensional parameters are very
significant to the geometry of barreling throughout the process of plastic
deformation of a cylinder under axial compression. The barreling effect
was studied for solid and hollow copper cylindrical blocks having different
dimensions. The relationship between the parameters was also studied.
The practical results obtained were compared with some of the existing
theories, and there was a good correlation of the results with these
theories.