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 This paper proposes the use of the integral sliding mode control (ISMC) 

based on the barrier function to control the servo actuator system with 

friction.  Based on the barrier function, the main features of the ISMC 

design were preserved, additionally, the proposed control design is done 

without the need to know the bound on the system model uncertainty, 

accordingly, the overestimation of the control gain doesn’t take place and 

the chattering is eliminated. Moreover, the steady-state error can be 

adjusted via selecting the barrier function parameter only. 

The simulation results demonstrate the performance of the proposed ISMC 

based on the barrier function where the system angle successfully follows 

the desired angular position with a small pre-adjusted steady-state error. 

Additionally, the obtained results clarify superior features compared with 

a traditional ISMC designed to the same actuator. 
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1.  INTRODUCTION 

One of the effective approaches to control nonlinear systems containing matched disturbances is 

sliding mode control (SMC), which has given efficiency in design has been widely used in industrial 

[1]. Despite the benefits of SMC, it has many disadvantages such as the chattering effectiveness, the 

reaching phase, and sensitiveness to matchless uncertainties [2, 3]. To solve these problems, various 

strategies of SMC have been proposed, including integral sliding mode control (ISMC), which is 

looking to remove the reaching phase by enforcing sliding mode during the full system response [4, 

5].In an integral sliding mode, the order of the motion equation is equal to the main system without 

reducing by using the dimension of the control input. Concepts of ISMC can expand for the purpose 
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of building a new type that can estimate turbulence and solve the problem of chatter without losing 

control accuracy and strength [6]. In the ISMC approaches; knowledge of parameters uncertainties 

bounds is required for the purpose of calculating the control gain [7].  

The adaptive controller is defined as being able to regulate its behavior for the purpose of 

responding to make dynamic changes for the process and the characteristics of disturbances [8]. 

Recently, the Adaptive Sliding Mode controllers based on using barrier function have been 

established as is present in [9]. 

In this paper, an integral sliding mode control based on barrier function is proposed. Then it was 

applied for a DC servo actuator system containing friction, to deal with the above strategies. 

The major advantages of the proposed algorithm in addition to the known features of ISMC are: 

 The algorithm does not require knowledge of the upper bound on the model uncertainty and 

disturbance or its derivatives. 

 Only one control parameter is needed, which also adjusts the steady-state error. 

 As a by-product, the chattering is eliminated because the proposed ISMC is continuous. 

The organization of this work is as follows. The second section introduces the problem statement. 

In the third section, the DC servo actuator system including the friction model is described. Then, 

Classical ISMC Design is discussed in section four. While in the fifth section the proposed controller 

is illustrated in brief. And, the sixth section explains the simulation results. Finally, in the seven 

sections conclusions are drawn. 

2. PROBLEM STATEMENT 

For the classical ISMC, the main difficulty is the determination of the discontinuous gain  , 

where it is required to know the upper bounds on the system parameters and on the friction and the 

external load components. This will lead to an excessive gain value which will cause undesirable 

chattering behavior. 

In this paper, we propose the use of the barrier function instead of the discontinuous control term 

  . So, we will not need to determine the gain   in classical ISMC, and consequently, we do not need 

to know the upper bound on the perturbation as mentioned above. Additionally, because the barrier 

function is a continuous function, the chattering is eliminated. 

3. DC SERVO ACTUATOR SYSTEM WITH FRICTION MODEL 

The DC motor is a specific type of motor that is classified as one of the main machines that use 

electrical power to generate mechanical power. The servo actuator system model can be represented 

by a second-order dynamic system with friction [10], 

    ̈          (1) 

Where; 

  The actuator position 

  The moment of inertia 

  The friction torque 

   The external load torque 

  The control input 

 

The friction torque is explained as static friction phenomena, which contain: Coulomb friction, 

viscous friction, and stiction friction [10] 
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Where; 

   The Coulomb friction  

   The stiction friction 
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   The stribeck velocity 

  The viscous friction coefficient 

4. CLASSICAL INTEGRAL SMC DESIGN 

For comparison purposes, the design of a classical ISM In order to design the classical integral 

sliding mode control (classical ISMC) system, the servo actuator system is rewritten in terms of the 

nominal and perturbation terms as follows: 

                     ̈ 
 

  
         (3) 

Where     is the perturbation term which amount of the parameter variations and the external 

load, and it can be expressed as: 

                                                       (
 

 
)   

 

 
        (4) 

Also,    is the nominal moment of inertia. In a state-space representation, Eq. (3) can be put by 

the following equations: 

 
 ̇                    

 ̇  
 

  
       

}   (5) 

Define the error functions   and    which are the tracking error and its derivative, as 

      
        
        ̇

}  (6) 

where   is the reference signal which chosen to be differentiable function, accordingly, Eq. (5) 

in terms of the error functions is given by, 

 
 ̇                               

 ̇  
 

  
         ̈ 

}  (7) 

Designing the classical ISMC is done here according to the fooling steps; let the control law be 

taken as 

                        (8) 

Where    is the nominal value for the moment of inertia,     is the nominal control applied to 

stabilize the nominal system dynamics with the desired characteristics while    is the discontinuous 

control designed to reject the perturbation term. 

 Now, define the sliding manifold     as 

               (9) 

Which consists of two main parts:       is the conventional sliding manifold and   is the integral 

term, with     ,      , z     . Let the conventional sliding manifold be chosen as 

            (10) 

Then, the integral sliding manifold derivative is 

  ̇     ̇   ̇    (11) 

By substituting Eq. (7), (8) into Eq. (11), we can obtain  

  ̇             ̈   ̇  (12) 
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Let the integral part derivative be defined as 

     ̇  ̈      (13) 

Accordingly,  ̇    becomes 

    ̇          (14) 

To rewrite the system dynamics  described in Eqs. (7), we apply the equivalent control  [10] to 

Eq. (14) yield; 
[ ̇   ]     [  ]     

 [  ]      

Sudstituting in Eq. (7), we obtain the following equivalent system dynamics; 

     
  ̇              
  ̇     ̈ 

}   (15) 

Therefore,    can be selected as in Eq. (16) which makes the origin of the error dynamics in (15) 

globally asymptotically stable 

      ̈             (16) 

where    and    are positive constant values selected according to the desired carectristic. 

 As a final step, we need to determine the gain   of the discontinuous control term   , where it 

is given by 

                 (17) 

The gain   is determined via the inequality 

   | |  (18) 

Then using Eq. (4), we obtain (Appendix A) 

             |  |     | ̇|  (19) 

According to the above, the classical ISMC is given by 

   

                                                                    

 ̇                                              
     ̈                                                    

               |  |     | ̇|        

                                                                
 
}
 
 

 
 

  (20) 

5. THE PROPOSED INTEGRAL SMC 

In this work, we propose to use the barrier function       instead of the discontinuous control 

term   . Firstly, let us define the barrier function as follows; 

Definition [1]: Let’s suggest that some     is given and fixed; the barrier function can be 

defined as even continuous function     [    ]      [   ] strictly increasing on [   ]  

    | |          

      has a unique minimum at zero and          

 

 

Two different classes of BFs exist: 

1. Positive definite BFs (PBFs):       
   

  | |
, i.e.           
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2. Positive Semi-definite BFs (PSBFs):        
| |

  | |
, i.e.          

The PBFs        was chosen and will be used when simulating the servo system in this paper. 

To this end, the following ISMC based on barrier function was proposed for the servo actuator 

system 

 

                                            

 ̇                      
     ̈           

       
  

  | |
           

                       

                 

}
 
 

 
 

  (21) 

where                  
 

  | |
 is a differentiable function of     . 

 

Remark 1: Since the proposed ISMC in Eq. (24) is continuous, the chattering will be eliminated 

(or attenuated if a smaller value of   is selected), moreover; the steady-state error is function to  and 

becomes smaller for smaller  .   
 

Remark 2: we do not need to determine the discontinuous gain   as in classical ISMC, which 

required knowing the bond on the perturbation term     . Instead, we need only to select a suitable 

value for   according to the wanted accuracy. 

6. SIMULATION RESULTS 

This section gives the simulation results of the DC actuator system with the proposed ISMC 

based on barrier function. The nominal and actual dynamic parameters of the model are presented in 

Table I and Table II respectively, which are selected based on the information provided in [10]. 

TABLE I: DC servo actuator and friction model nominal parameters. 

Nominal 

Parameters 

Value Unit 

   0.2       
    2 N. m 

    2.19 N. m 

    16.69 N. m 

    0.01 rad/sec 

   0.65 N. m.sec/rad 

 

TABLE II: DC servo actuator and friction model parameters used in the simulation. 

Actual Parameters Value Unit 

  0.23       
   2.25 N. m 

   2.5185 N. m 

   21.1935 N. m 

   0.0115 rad/sec 

  0.821 N. m.sec/rad 

The simulation is performed using MATLAB with the initial condition              

 
 

   
   .The control objective is to satisfy the system stability as well as minimizing the tracking 

error so    tracks the desired trajectory  . The position, velocity, and acceleration desired signals in 

the present work are chosen as [11]. 

   
 

   
         

 

   
           

  ̇                  (25) 

  ̈                                           



Engineering and Technology Journal                     Vol. 39, Part A (2021), No. 02, Pages 248-259 

 

253 
 
 

The ISMC based on barrier function input   is given in Eq. (21), with       .While for the 

classical SMC input   is as given in Eq. (20), for the gain   with the nominal integral control 

parameters         and       . 
To demonstrate the characteristics of the proposed control and highlight its robustness, two cases 

were used: 

 

I. Constant load torque case  

In this case, a constant load torque was used          .The results can be illustrated as 

follows: In Figure 1, the time required to reach the desired angle is less than 0.1 sec for both 

controllers classical ISMC and ISMC based on barrier function. This result is realized while plotting 

the error in Figure 2 where the maximum error of angle does not exceed         radian. The 

sliding manifolds as shown in Figure 3 does not exceed   for the proposed controller from the first 

moment of operation, on the other hand, the classical ISMC also doesn’t exceed   but it represented 

by a very high amount of undesirable switching of the actuation torques. The control effort is 

clarified in Figure 4, where it can notice that the classical ISMC required more effort in addition to 

unwanted switching, unlike the continuous one for the ISMC based on barrier function. 

 

Figure 1: Angle   vs. time,    = constant. 

 

Figure 2: The position error   vs. time,    = constant. 
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Figure 3: The integral sliding manifold      vs. time,    = constant. 

 

 

Figure 4: The control input   vs. time using saturation function for Classical ISMC,    = constant.  

 

To solve the problem of chattering in the classical ISMC for the above case, the saturation 

function is used as an approximation for the           function. With this change, the controller 

becomes as follow 

       (      )                 (22) 

In this case, the results can be clarified as follows: In Figure 5 the time required to reach the 

desired angle is still less than 0.1 sec for both controllers classical ISMC and ISMC based on barrier 

function. This can be checked while plotting the error in Figure 6 where the maximum error of angle 

does not exceed         radian. The sliding manifold as shown in Figure 7 does not exceed   for 

the proposed controller from the first moment of operation, on the other hand, the classical ISMC 

also doesn’t exceed ε and the chattering problem has been solved using a saturation function as an 

approximation for            function with   is taken equal to 0.009. This function caused the two 

controllers to work similarly. The control effort is clarified in Figure 8, where it can be noted that the 

classical ISMC and the barrier ISMC required the same effort. 

The similarity between the control performance for the classical ISMC and the ISMC based 

barrier function is the result of using the same sliding mode control method (the ISMC) and both 

controllers provide the control input with the efficient gain through    which enables the control 

system from maintaining the state in the vicinity of the sliding manifold from the first instant. 

Additionally, both controllers use the same nominal controller which led to the same state response. 

 

 

Figure 5: Angle   vs. time using saturation function for Classical ISMC,    = constant 
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.  

 

Figure 6: The position error   vs. time using saturation function for Classical ISMC,    = constant. 

 

Figure 7: The integral sliding manifold      vs. time using saturation function for Classical ISMC, 

   = constant. 

 

 

Figure 8: The control input   vs. time using saturation function for Classical ISMC,    = constant. 

 

II.  Variable load torque case 

    In this case, an increasing variable load torque was used which expressed in Eq. (23), 

     {
                            
                        

                       
  (23) 
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Figure 9: The increasing variable torque load 

Figure 10 represents the DC actuator angle, where the time required to reach the desired signal is 

less than 0.1 sec for both controllers' classical ISMC and ISMC based on barrier function. This result 

is realized while plotting the error in Figure 11 where the maximum error of angle does not exceed 

           radian. The sliding manifold as shown in Figure 12 does not exceed   for the proposed 

controller while the classical ISMC also doesn’t exceed . The control input is seen in Figure 13, 

where for the barrier ISMC the controller is still continuous in spite of increasing the external load by 

four times. 

The above results reveal the ability of the proposed continuous controller in enforcing the 

position to follow the desired reference with an error not exceed   in spite of system uncertainty and 

variable external disturbances and without chattering. The results of the classical ISMC also show the 

ability to make the position to follow the desired reference but with discontinuity and inducing 

chattering. Moreover, the only assigned parameter for the barrier ISMC is  , which represents the 

tracking accuracy also. For the classical ISMC, the situation is different where it required calculating 

discontinues gain k according to our knowledge about the bound of the uncertain parameters and on 

the external disturbance, which also leads to a high amplitude of the control input. 

 Finally, the benefits of using the ISMC based on barrier function can be summarized as 

follows 

1. The design of the proposed controller is done without the need to know the bound on the 

system model uncertainty. 

2. Calculating the value of the control gain is not required for the proposed controller; on the 

other hand, it is essential for the classical ISMC. 

3. The ultimate bound on the steady-state error can be adjusted when using the proposed 

controller and because the bound on the sliding variable is preselected by ε, which is not the 

case for the classical ISMC, where the bound on the sliding variable is a function for many 

parameters including the uncertainty of the system model besides the parameters of the 

approximating function. 
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Figure 10: Angle   vs. time using saturation function for Classical ISMC,    = variable. 

 

 

Figure 11: The position error   vs. time using saturation function for Classical ISMC,    = variable. 

 

 

Figure 12: The integral sliding manifold      vs. time using saturation function for Classical ISMC, 

   = variable. 

 

 

Figure 13: The control input   vs. time using saturation function for Classical ISMC,    = variable. 

 

7. CONCLUSION 

In this paper, a barrier strategy to adjust the gain of ISMC for the DC servo actuator system with 

a friction model was proposed. The main advantage of this strategy is unlike the classical ISM where 

the computation of the discontinuous gain needs information on the upper bound of the system 

parameters and disturbances, where here the only required design parameter is the   value which 

quantifies the tracking accuracy. The obtained results for different torque loads showed that the 

proposed ISMC based barrier function has a similar control system performance to the case of 

employing ISMC, but with a smaller control input effort. In addition, in order to eliminate chattering 

in classical ISMC, the discontinuous term is approximated using the saturation function, which 
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required selecting a suitable design parameter  . Although in this case, the results seemed very close 

to the results of the proposed controller, it still needs many tries times to select the suitable value for 

α which is not the case for the proposed ISMC which based on the barrier function, where due to the 

differentiability nature of the barrier function which it prevents chattering in the system response. 

 

Appendix A 

To determine the discontinuous control gain     , the first step starts from inequality (22) and 

using Eq. (4) 
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Where     , taking the value of        and using the system parameters with maximum 

uncertainty (35%) as presented in Table A. I, the following terms in the above formula for   are 

calculated; 

| (
  
 
)| |

  
    

 
  
  
|      

|
  
    
|    

|
 

    
|           | ̇| 

Table A. I: System parameters with     uncertainty used for Classical ISMC. 

Parameters Value Unit 

     0.13       
       2.5 N. m 

       2.9565 N. m 

       22.5315 N. m 

     0.8775 N. m. sec/rad 

Then, for       ,  is equal to 

             |  |     | ̇|  (A.1) 

For the variable load torque case we have |  |   , accordingly   becomes 

             |  |     | ̇|  (A.2) 
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